«3100

ESD ACCESSION LIST,
ESD-TDR-45-168 ESTI Can No.___ AL 47492

Copy No. __ , ot / CYSs

(FINAL REPORT)

JaL=(
-
4

COoU '\
r E
-

RESEARCH ON COMPUTER-AUGMENTED INFORMATION MANAGEMENT

TECHNICAL DOCUMENTARY REPORT NO, ESD-TDR-65-168

MARCH 1965
", P ‘.D‘F:
D. C. Engelbort e ' COPY
Bonnie Huddart
SCIENTIFI 10N DIVISION

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscam Field, Bedford, Massachusetts

(Prepared under Contract Na. AF 19 (628)-4088 by Stanford Research Institute,
Menlo Park, California.)

DDC AVAILABILITY NOTICE

Copies have been deposited with the Defense Documentation Center. (DDC)

DISSEMINATION NOTICE

Copies available at the Clearing House for Federal Scientific & Technical Infor-

mation. (CFSTI) (Formerly OTS)

LEGAL NOTICE

When US Government drawings, specifications or other datc are used for any purpose
other than a definitely related government procurement operation, the government
thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the said draw-
ings, specifications, or other data is not to be regarded by implication or otherwise
as in any manner licensing the holder or any other person or conveying any rights

or permission to manufacture, use, or sell any patented invention that may in any
way be reloted thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TDR-65-168

(FINAL REPORT)

RESEARCH ON COMPUTER-AUGMENTED INFORMATION MANAGEMENT

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-65-168

MARCH 1965

D. C. Engelbart
Bonnie Huddart

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

(Prepared under Contract No. AF 19 (628)-4088 by Stanford Research Institute,
Menlo Park, California.)

ABSTRACT

This report presents results of a research and experimental project
in computer-aided information management., The report is itself a product

"

of the project: with the exception of "front matter," the entire report

was composed, edited, and produced with on-line and off-line computer aids,

For this project, the techniques of computer aids were applied to
two areas: task monitoring and program design. The processes and tech-
niques developed offer a promising beginning to computer-aided programming
design extending from initial specification to final debugging in a uni-
fied design record that grows and evolves to complete final documentation.
The processes and techniques also offer promise in increasing the produc-

tivity of individuals and groups of programmers.

Future work envisioned for information-management systems such as that
used in this study include program design records, external-reference

documentation, and user reference manuals.

REVIEW AND APPROVAL

This technical documentary report has been reviewed and is approved.

s 7 ‘ .
%;74\/{(:‘ -"?%~‘2’W\-} . (-ﬁ\ K, O\P'Q(“ \ el Cc-Qm_..?. S/

FRANK E., HERIN, JR. .«é'\ PAUL G. GALENTINE, JR.
1st Lt., USAF Col., USAF
Project Officer Director of Computers

Deputy for Engineering & Technology

iii

CONTENTS

ABSTRACT « &

LIST OF ILLUSTRATIONS .

FOREWORD

I INTRODUCTION . . .

II SUMMARY AND CONCLUSIONS

III1 PROGRAM-DESIGN
A, Basic Rules

. Examples . . .

B
C. Design and Modification Procedures
D

. Discussion . .

IV TASK MONITORING .

V FUTURE POSSIBILITIES

BIBLIOGRAPHY

RECORDS

Appendix A USER'S GUIDE, MAN-MACHINE INFORMATION SYSTEM

. iii
vii

5 ix
d 1
3 7
. 13
3 13
21

d 33
d 38
R 43
3 53
. 65
A-1

L e e P ——

ILLUSTRATIONS

Fig. 1
Fig., 2
Fig. 3
Fig. 4
Fig., 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Graphical Representation:
Overall On-Line System . . . o+ + &« o « & &

Linked-Statement Representation:
Overall On-Line System« « ¢« .« o .

Graphical Representation:
Main Executive Routine « « ¢« « . .

Linked-Statement Representation:
Main Executive Routine

Graphical Representation:
Display Frame Image Subroutine

Linked-Statement Representation:
Display Frame Image Subroutine

Graphical Representation:
Display Frame Image One Line at a Time . . .
(Part of Display Frame Image Subroutine)

Linked-Statement Representation:
Display Frame Image One Line at a Time . . .
(Part of Display Frame Image Subroutine)

Graphical Representation:
Sample External Devices and Format Any Inputs
(Part of Display Frame Image Subroutine)

Linked-Statement Representation:
Sample External Devices and Format Any Inputs
(Part of Display Frame Image Subroutine)

Sample of Status Report Memorandum Form .,

vii

o« o e 23
. . . 24
o« o . 25
. . . . %
. . . L] 27
o« o e 28
o e e e 29
L] . . 30
. o . 31

FOREWORD

This report summarizes the status of one project within a multiproject
program at Stanford Research Institute, aimed at increasing the intellec-

tual effectiveness of problem~solving human beings.

This report differs markedly from other Technical Documentary Reports
issued by Electronic Systems Divisions and its contractors. A glance at
the pages of this report will reveal many stylistic differences; not so
readily apparent are the reasons for the differences and the methods by

which the report was prepared.

Viewed as a whole, the program is an experiment in cooperation of man
and machine. The comprehensible part of man's intellectual work involves
manipulation of concepts--oftentimes in a disorderly, cut-and-try manner-
to arrive at solutions to problems. Man has many intellectual aids (e.g.,
notes, files, volumes of reference material, etc.) in which concepts are
represented by symbols that can be communicated and manipulated externally.
We are seeking to assist man in the manipulation of concepts--i.e., in his

thinking--by providing a computer to aid in manipulation of these symbols.

A computer can store and display essentially any structure of symbols
that a man can write on paper; further, it can manipulate these symbols in
a variety of ways. We argue that this manipulation service can be made
available to help the on-going intellectual process of a problem-solving
man; the service can be instantly available to perform tasks ranging from

the very smallest to the very largest,

To make the most of this service, we believe that man will signi-
ficantly alter his way of structuring and manipulating his working records
and his ways of thinking and working. These altered facets of his problem-

solving "system" will provide better coupling between the processes of the

mind and the services of the computer.

One promising approach to investigating a man-machine '"system'" would

be for a group to:

ix

FOREWORD

(1) Develop an initial set of experimental aids;
(2) Apply these aids to their daily work;

(3) VUse the experience thus accumulated to generate needs and
possibilities for improvement;

(4) Improve the system (with new conventions, computer processes,
methodology, etc.); and

(5) Apply the improved system in their daily work, using the new
experience to generate new needs and new possibilities for
improvement, and so on.

The process sketched above is essentially what is being done in this

multiproject program.

Our initial focus has been on computer-aided text® manipulation.

There are several reasons for this:

(1) Text is representative of our speech and much of our conscious
reasoning about nontextual records; it is the basic fabric in
which most of the interpersonal collaboration in system develop-
ment work such as ours takes place.

(2) Text is applicable as a representation of our thoughts and
actions at all levels of our working system (e.g., from
coding for the computer up to long-range planning for the
research program). This promises us a comprehensive inte-
gration of our aids into our way of working--an important
factor in our basic approach to exploring computer aug-
mentation.

(3) A coordinated, working system for usefully manjpulating text
is relatively easy to implement. For the same resources, a
wider collection of useful working aids may be implemented
for text than for graphics, for instance,

(4) An effective system for handling the text of working records
(planning, design, reference, etc) will provide a sound
structure in which later to embed other symbols e.g.,
graphics, mathematics, chemical formulas--(which, for the
most part, are actually quite isolated in the context of
our total working system).

By "text" we mean generally information represented by strings of
characters. This includes mathematical equations, programming state-
ments, etc.

FOREWORD

The vehicle for our study and experimentation has been a combination

of on-line and off-line systems.
The on-line system includes the following facilities:

® CDC 160A computer, with storage for 8,000 12-bit
words of core storage, 6.5 usec access time,
auxiliary storage provided by a 32,000-word drum
and one magnetic tape transport; paper tape
input/output facilities.

® CDC 220 character generator and DDI 16-inch monitoring
scope to provide on-line display.

® Invac keyboard, Saunders Associates light pen, and

other various graphical input devices for on-=line

operator input.
Using this system, about 18,000 characters of working data can be written
on the drum. Any portion of this material can be displayed on the CRT;
the current working size of the display is 16 lines of 63 characters each.
Basic manipulation operations of scan, move, copy, replace, delete, and
insert, can be performed on entities of character, word, line, or state-
ment. When manipulation is complete, a punched paper tape suitable for
printout on a Flexowriter is produced. This tape may also be re-entered
into the on- or off-line systems at any future time for further modifica-

tion or manipulation of the data.

The off-line system, which incorporates the CDC 160A and a Burroughs
5500, allows one to specify general manipulation of the text with straight-
forward commands punched on paper tape by a Flexowriter or Teletype.

These input paper tapes are processed to produce a fresh, cleaned-up
version of the input; the output of the off-line system is both hard copy
and revised paper tape. This output may, of course, subsequently be
processed in either on- or off-line operations. Using the off-line sys-
tem, substructures of text of any size can be deleted or moved with a

few simple commands, new statements and substructures can be inserted as
desired, and existing statements can be modified. Presently, turn-around

time for the off-line system is a half day or more. This makes it more

xi

FOREWORD

limited in its applications than the on-line system; however, some tasks--

such as updating operations--are easier to perform off-line than on-line.

We come, then, to the basic and visible difference between this report
and other ESD Technical Documentary Reports: With the exception of this
Foreword and other front matter, this report is produced entirely on the
on-line and off-line systems that are being described. Certain features
of this technique should be noted:

® Statements--be they subheads, phrases, sentences, or
paragraphs--are numbered and presented in hierarchical
order. These statement numbers are one '"handle" by

which a statement may be grasped for any of the opera-
tions performed on- or off-line.

® References, which appear at the end of the report, are
shown in the text by their computer mnemonic (e.g.,
Ref (SRI 1), rather than by the more familiar superscript
notation.

Detailed study of this report requires familiarity with the terms, con-
cepts, and computer-aid processes developed in this program; these are
contained in Ref (SRI 1), a copy of which is printed as the appendix to
this report.

Under Contract AF 19(628)-4088, ESD has sponsored study of struc-
turing and manipulating techniques for management of information--
specifically, the system-program design documentation. Other projects
supporting the program are a recently completed project for Air Force
Office of Systems Research [Contract AF 49(638)-1024], under which the
basic conceptual work was done, as well as the first off-line manipulation
work; a current project for the Advanced Research Projects Agency
(Contract SD-269), under which work on information structuring, basic

working methodology, and the higher-level manipulation processes in the

xii

FOREWORD

on-line system are being done; a current project with National Aeronautical
and Space Administration (Contract NAS 1-3988), under which display-control
techniques that represent the foundation of the on-line manipulative sys-

tem are being studied and developed; and an internally-sponsored project at

Stanford Research Institute, under which the current off-line system was

developed.

xiii

SECTION I -~ INTRODUCTION

1 BASIC ROLE OF PROJECT WITHIN THE PROGRAM

la To explore the possibilities of using closely coupled
computer aids for performing significant
information-management tasks, by developing and
experimenting with improved information-management
techniques for our own everyday use within the program.

2 THE FORMULATION OF OBJECTIVES IN THE ORIGINAL PROPOSAL

2a. The specific obJectives of the proposed study are to
develop systems of hardware, software, concepts, and methods
that will permit the on-line operator to:

2al Analyze amd structure information in a quantity and
variety that significantly exceed the carability of a
human not ailded in this fashion.

2a2 Update the information structure in response to more
rapid changes in informetion or user need than he could
previously have accommodated,

283 Retrieve amd compile significant information from
the structure more quickly and comprehensively.

2b There has been one apparent qualification of this
original formulation.

2bl Our work has been to harness computer alds for the
type of information needs sketched above; but we have not
restricted this to on-line aids--we have also explored
and gained working experience with off-line man-computer
cooperation. The program-design documentation study
discussed in Section IV is one example of this; this
report itself is another.

2b2 The Information-Management project has been
rarticularly stimulated and aided by the potentials
opened up by the operation of our off-line
text-processing system, Our formulation of ob jectives
mst now take shape within this new set of needs and
potentials,

2¢ The obJjectives we pursue in this Informetion-Management
project are best conceived as a particular kimd of
user-system research, in the sense described in Ref(OSR2).

SECTION I -- INTRODUCTION

2cl The total context is "the many coordinated aspects
of human intellectual effectiveness,"

2c2 The particular aspects we explore are ''the
coordinated set of concepts, conventions, methods, and
skills" which enable a human problem-solver to harness
computer ailds in managing his working information.

2c3 This includes schemes for structuring information,
articulating it in special ways to bring out its various
kinds of significance (e.g., see Section III); techniques
for modifying, updating, and consulting this body of
structured information; plus the human procedures,
methodology, and skills that knit these together into an
effective user system,

3 METHOD OF APPROACH

3a The overall basic method of approach throughout this
project has been:

3al To take real, live information management problems
from our own working environment.

3a2 To derive tentative solutions that utilize the
hardware and software products of the other proJjects in

the program.

3a3 To implement these solutions in rough, preliminary,
experimental versions, amd try them out, in order to gain
vorking experience as a basis for evaluating their
functional weaknesses and potentials,

Ja4 To continue from this point, modifying amd adding to
the system to evolve continually better solutions and to
expand the scope of problems being handled,

30 This basic method of approach has two unusual
characteristics:

3bl We must largely follow where the prcblem leads.
This is exploratory research, without a predetermined
itinerary; the needs brought out in our changing
environment influence our course,

3b2 We must coordinate closely with the other projects
within the program, by developing, applying, amd testing
products they can use, and using the products they
provide, The changing possibilities of our working
environment influence our course,

SECTION I =-- INTRODUCTION

3¢ The initial, more specific formulation of this general
method of approach, governing our work in the earlier stages
of the project, had two aspects.

3cl The project was to assume responsibility for
specify ing and monitoring, in an overall way, an
information-menaging scheme for the working information
involved throughout all the projects in the program.
This would include specifying the structuring
conventions, the terminology, and the procedures of
information management to be followed by all our
projects,

3c2 Within some smaller "focal" area (representative in
its dimensionality, but more manageably delimited in its
scope), we would as rapidly as possible specify, design,
implement, and gain working experience with an actual
Information-management subsystem incorporating our
computer aids,

3c2a This subsystem was to be conceived as a
balanced, coordinated set of information formats and
structuring conventions, terminology and notations,
amd procedures for entering information and
maintaining useful up-to-date records that could be
quickly anmd flexibly consulted.

3c2b We would select an area where the quantity,
complexity, and variety of information, and the
functional requirements, were small enough so that we
could develop useful models amd evaluative techniques.

4 EVOLUTION OF OUR WORK

4a The specific area initially selected for the "focal"
stuly was a body of status information about the programming
work in progress. A trial scheme of task definition ard
status reporting was implemented and operated for several
months (see Section IV),

4al We found that for this ever to become a really
useful body of working information we would need far more
detailed task descriptions, and easier ways of modifying
them.

4a2 Tasks are hierarchical in nature--to give a detailed
description of a task usually involves isolating its
subtasks, together with the resources, constraints,
method of approach, etc.

SECTION I -- INTRODUCTION

423 The "linked-statement" structuring conventions
(which had meamwhile been developed within the ARPA,
NASA, ard internally sponsored proJjects) adapt very
naturaelly to representing these types of relationships.
For instance, the linked-statement structuring of a
task-description allows analysis to whatever depth might
be relevant or useful in the particular case,

4a4 We soon found that for purposes of analyzing status
the best programming-task description was the description
of the current state of the program design. But
obviously this type of evolving record would be useful
for other purposes than as an input to a task-monitoring
system,

4a5 It seemed likely, for instance, that these methads
of depicting the design records could prove very powerful
for documentation of our (and others') programming-system
development work.

436 The fast and efficient computer processes for
modify ing such evolving structures promise to make
updating these records easy amd quick enough so that the
system designer or programmer can actually do his
designing work (including his "scratch work") this wey.

4b Our more recent activity has investigated this area in
spacific detail, as well as re-examined our overall
information-management system in the light of the computer
aids which other projects had made available to us., These
new structuring conventions and processing abilities proved
to be well sulted for describing computer program
structures, (Our multilevel program-design explorations are
described in Section III.)

4bl System-program documentation has offered a good
workout for the new capabilities; it provides variety and
complexity enough to test the conventions and processes,

4p2 We have developed amd (to some extent) refined a
reasonably adequate and useable set of descriptive
techniques for recording complex program structures,
enbedding the relevant kimds of supplementary information
and commentary at the appropriate points. The
informmtion is formatted, tagged, and linked in special
ways to make this a usefully articulated record, and give
aid in comprehension.

403 We have also begun to explore how these same

SECTION I -- INTRODUCTION

structure amd processing conventions could be used for
developing a program description while the program is
being designed amd written--to incorporate descriptive
mterial about data structures; record design
considerations and decisions; explain special coding
devices; and so on. We hope to develop a programing
methodology Iincorporating these aids throughout the
entire design process, providing an evolving up-to-date
record of the work in progress. With very little
reworking, the design record would then become the final
documentation of the finished program--an unusually
complete and useful documentation.

4c The new structure and processing aids will also be
valuable to us in service of other information-management
needs:

4cl They provide a far more flexible and useful
framework for our group documentation than the '"file
folder" descriptors we worked out earlier in the project;
a framework for exchanging amd merging information, amd
for maintaining an up-to-date central file of "reference"
documents (such as our supplementary reference, "SRI1,"
printed as an Appemiix to this report).

4c2 They can be applied within our external citation
files and documents, in order to search and classify the
contents of those files, and to compile materials for
special purposes.

4c3 They provide the required tools for devising a
realistic and mobile scheme of status-reporting amd
task-definition, which would allow both a more effective
coordinating of group activity and a more accurate (and
less burdensome) monitoring of individual progress.

SECTION II -- SUMMARY AND CONCLUSIONS

1 The dominant features of the work reported here are that the
work 1tself is part of an experiment; within this experimental
environment, the work was coordinated with several other
projects; and there was a common aspect of "bootstrapping”
involved in their coordinated approach.

la VWe are experimenting with computer-aided working
techniques as a way of exploring thelr potential valuve,
Thus, our main product 1s a report of experiences with the
aids we heve developed amdl an assessment of their
potentials.

b This project is coordinated with others, each of which
is developing aids for some aspect of owr working system,
mearwhile using and evaluating its own developments together
with those of the other projects.

le This use and evaluation takes place by applying the
developed tools to our everyday work. Thus, the products of
our work are used by us to improve our ebility to do our
work (i.e., we are "bootstrapping").

lel This report is an example of both coordination amd
bootstrapping.

lc2 The report was composed and modified by means of
computer aids anl produced directly on the mat from
computer output.

1c3 The linked-statement form (the "outline"
appearance), which is one aspect of our development, is
integral with our way of working; we do all of our
writing this way.

2 For this projJect, two particular applications of these
techniques were taken up: task monitoring and computer-program
design.,

2a The task-monitoring activity was aimed at providing a
supervisor with information about task description and
status that would enable him to assess the state of a
developing system.

2al 1In this early activity, computer aids did not enter

into the collection of this information==filled-out forms
and clerical procedures were used.

2aZz The computer aids were to be involved in the

SECTION II -- SUMMARY AND CONCLUSIONS

analysis of this information, mostly to be done by
Information-Management researchers or by the programming
supervisors,

2a3 More complete descriptions of the tasks was needed,
which led to the development of techniques for
programming-task description that turned out to be very
promising in their own right for providing comprehensive
design records.

2a4 Consequently, the task-monitoring activity became
overshadowed by its offspring--by the burgeoning
possibilities that emerged in connection with the
program-design activity--anmd is likely to remain dormant
until the more promising possibilities of the
program-design activity have been developed.

2a5 When we turn our attention back to the
task-monitoring problem, the kinds of structuring and
processing of design records that are developing in the
present design activity should provide an almost ideal
data base and techniques with which to derive task
description amd status information.

2b The program-design activity is aimed toward developing
the forms for the design records and the processes for
manipulating them. These are to provide a coordinated means
for recording all relevant design information, and an
assoclated means for effective ccmputer-aided modification
of these records,

2bl We have developed two types of computer aids for
mnipulating these design records: an on-line system
that uses a cathode-ray-tube display for instantaneous
study and modification of records, and an off-line system
that provides hard-copy printer output of a modified
record after a normal job shop turn-arourd delsy.

2bla Special conventions for naming, linking, and
tagging accommodate the particuler aspects armd
relationships involved in a program-design record.

2blb For example, a list of statements may represent
a complete flow diagram of a process; each subprocess
is represented by a statement., Branching and
subroutine calls are handled by special types of
inter-statement links,

Z2ble Use of this form is independent of the
programming language used; any such language may be

SECTION II -- SUMMARY AND CONCLUSIONS

erbedded within this form with equal advantage.

2bld We find that within this one
consistently-structured design record we are sble to
accommodate any of the Information that is commonly
found on program listings, flowcharts, data-formet
tebles, and written specifications and constraints.

Zbldl There can be a particular place in the
record for every particular kind of relevant
Iinformation.

2bld2 The structure is arbitrarily expandable,
serving well the disorderly, cut-and-try process of
design,

2ble The form is particularly amenable to computer
manipulation; it also provides natural concepts and
operations for a humn to use in designating such
manipulation.

2b2 The processes for working on this integrated form
allow the designer to add or modify with such speed and
flexibility that such & record really could keep up with
the cut-ard-try deslgn processes, always representing the
current state of the design.

2b2a The on-line system is fast and flexible enough
to represent a promising beginning of effective
computer-aided programming design through all the
stages, from initial specification to final debugging.
The unified design record would grow and evolve to
"become the complete final documentation at the emd of
the process. This approach can integrate with any of
the emerging developments in on-line compiling and
debugging.

2b2b The off-line system offers many of the same
advantages. In addition, it can be used on any
conventional (Job-shop type) computer system. The
basic techniques of form amd manipulation for
program-design records are thus available to almost
any programmer,

Zb3 Provocative possibilities for on-line aids in
debugging emerge in connection with this form of design
record:

2b3a Quickly anmd comprehensively scanning amd
studying the record--e.g., scanning at any desired

SECTION II -- SUMMARY AND CONCLUSIONS

level of detail, automatically locating special points
of interest by context, easily following
cross-reference links,

2b3b Easily designating trial execution of process
blocks of any level, with flexible, comprehensive
features for tracing ard trapping and for portraying
the results.

2b3c Keeping track of hypotheses, and of evidence
needed arm evidence cbtained.

¢b3d Deducing the source of a bug from the gathered
clues.

Zb3e Quickly looking up relevant reference
inforretion--such as system conventions, equipment
characteristics, etc.

3 From our experience to date, we conclude that these
design-record techniques offer promising possibilities in the
following ways:

3a The individual programmer 's productivity can be
increased if his way of working can usefully incorporate an
efficient record-keeping system, especially if these are
used in conjunction with computer aids for design amd
debugging.

3 The productivity of a cooverating group of programmers
may be increased if each makes good use of the unified
record-keeping system, The working exchanges of information
among them and with their supervisor can achieve both the
uniformity provided by stardardization, amd the speed amd
flexibility provided by computer aids appliceble
comprehensively over the gamut of relevant recorded design
information,

3l Such a group inevitably changes its task
specification during the design process. The new
techniques promise to increase the speed and flexibility
with which such changes are accommodated.

3¢ This working methodology offers a form of
"self-documenting system development."

3¢l The unified design record, enmbodying all the
relevant specifications, considerations, etc., will
evolve through all the stages of the design process,
becoming the complete final documentation of the system,

10

SECTION II -- SUMMARY AND CONCLUSIONS

3d In subsequently changing a system that has been designed
and documented in this way, these same techniques allow naw
design possibilities to be evaluated or implemented quickly
amd completely--with "self documentation" obtaining for the
system molification as well,

4 Our work to date brings us to the following conclusions
about our general approech:

4a As an exploratory tactic, bootstrapping is
simultaneously provocative, frustrating, and well
worthwhile,

481 Depending upon our newly-developed techniques in our
own work injects a down-to-earth realism into the needs
and possibilities with which we concern ourselves,

4a2 While the total form of the new working method is
being developed, the many imperfections ard
iInconsistencies are a continual source of frustration,
even though they provide the necessary realism,
orientation, amd stimulation.

4p An important hypothesis upon which the experiment is
based is that the changes in working methodology amd
language (the form of one's working record), required for
effectively harnessing closely-coupled computer services,
would prove at least as important amd worthy of design
attention as would the development of those computer
processes themselves,

4c The linked-statement form is only a primitive first step
in structuring our working records. But its impect upon our
ways of thinking and working, upon the computer processes we
have developed aml the wealth of future possibilities that
these stimilate, leads us to feel that this "methodology and
language" hypothesis has been verified.

4d There are promising possibilities for future exploration
in connection with program-design records,
external-reference documentation, and user reference
menuals, We hope to pursue these applications in future
work within the program,

11

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

1 INTRODUCTION

la The purpose of the techniques described below is to
provide complete and consistent means for representing all
of the important facts, considerations, relationships, etec.,
that could usefully be entered into the working record of a
program design. The rules are not intended toc force the user
into rigid, formalized ways of recording his work; we
introduced conventions and formalisms only where we felt
that there was a definite advantage to the user,

I The discussion uses the following definitions amd
terminology :

Ibl The entire set from Ref(SRI1l) is assumed.

b2 Let "PRC ST1" ("process of ST1") represent the
actual process represented and described by STI.

2 BASIC RULES

2a All description is written in structured-statement form,

2b A design description of a computer program contains
several distinct types of statements:

2bl Describing an initial specification, requirement, or
constraint.

2b2 Describing the purpose am usage of the finished
program, for instance to someone who wants to use the
program,

2b3 Describing a convention, rule, or definition to be
used within the design document to facilitate
description.

2b4 Describing the data structure,

2b5 Representing anmd describing an actual program
process:

2bSa An actual object-code statement for the computer
(rare).

ZbSb A source-code statement, for a translator

13

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -~ BASIC RULES

program.
2bS5c A higher-level statement, in whose substructure

all the lowest-level statements are of either of the
above types.

2b6 Describing special tricks or tactles in design.

2b7 Describing some aspect of a particular processing
state,

2c These types of statements can be distinguished in
several ways:

2cl By the text content of the statement.

2c2 By the nature of the name given the statement.

2¢3 By a special tag in the statement.

2c4 By being untagged--in which case the type is assumed

to be the same as that of the first higher source

statement that 1s explicitly tagged.
2d We deal below with only the data- amd
process-description types, which represent the greatest need
ard possibility for improving documentation of programs.

2e Special conventions for process description are as
follows:

2el The starmdard conventions from Ref(SRI1) are assumed.

2e2 Tags for process structures--if the given tag
appears in ST1l, it has the assoclated significance:

2e2a %*p (for process): STl represents and describes
a process,

2e¢2b *c (for comment): used two ways:

2e2bl Appearing at the head of ST1l, after location
nurber and name (if any), *c designates that ST1
ard its substructure are comment rather than
process statements.

2e2b2 Appearing in the body of ST1l, after some

relevant process designation, *c indicates that the
remaining text of ST1 (or, up to an *o tag) is to

14

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

be treated as comment information. STl arnd its
substructure are still treated as process
statements.

2e2c *d (for data): STl represents and describes
data that are to be stored in the computer, as opposed
to processes to be stored anmd executed.

2e2d *sr (for subroutine): STl represents a closed
subroutine (and must therefore be named).

2e2e *o (for OSAS): The remaining text in ST1,
between the *o tag and the end of the statement, is
composed of lines of OSAS code, formetted as for the
assenbler,

2e2f *1 (for incomplete): The sublist SBL-ST1 is
incomplete-- i.e., it does not describe PRC ST1
completely.

2e2g *ib (for incomplete below): At least one
statement in SBL STl has either an *1 tag or an *ib
tag, or both., (Use not mandatory.)

2e3 The norml control sequence (i.e., process flow when
not directed by a TO or CALL link) is as follows:

2e3a Process control normelly passes from one
statement, ST1l, to its 1list successor, SCC ST1,

2e3b Control bypasses any non-process (e.g.,
*c-tagged) statement.

2e3c Control may not pass (by any means) to a
statement having a *d tag.

2e3d Control may never pass to an *sr-tagged
statement by any other means than a CALL link,

2e4 Branching operations are as follows:
2ed4a A link "TO(NML1)" appearing in a statement
indicates transfer of control to the statement named
NM1l, urder whatever comditions are specified in the
preceding text of that statement.

2edb If no comdition is specified in the preceding
text, transfer is unconditional.

2e4c If the specified conditions are not met, the

15

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

link is ignored and control passes on *hrough the rest
of the statement.

2eS Subroutine calls are treated as follows:

2eSa A link "CALL(NM1)" appearing in a stetement
indicates a Jjump-return subroutine call to the
statement named NM1, under whatever conditions are
specified in the previous text of the statement.

2eSb If no corditions are specified, the Jjump is
unconditional.

ceSc If the specified conditions are not met, the
link is ignored, and (as when control returms after
subroutine execution) control passes on through the
rest of the statement.

2e6 Sublists of process statements are treated as
follows:

2eba If ST1 1s a process-description statement, its
sublist (SBL ST1l) represents a complete description of
PRC STl as a set of lower-order processes, each
represented by a statement of the sublist,

2e6b The first process statement of SBL STl to which
control will pass 1is:

2e6bl The first process statement on the list, if
ST1 has no name,

2e6b2 (X) The process stetement bearing the same
name as does ST1, if STl has a name,

2e6b3 *c If control can arrive at STl by passing
through the previous statement (i.e., not via a
TO(NAM ST1) 1ink), then control must pass first to
the first process statement of SBL STI,

2ebc Any nonprocess statement in SBL STl must be
explicitly tagged; process control will then bypass
1t

2e6d If process control passes SBT STl (in other
words, to try to go to its (nonexistent) list
successor), this is an implicit designation that the
process PRC STl is finished, and that control is to
pass from ST1 to its successor, SCS ST1.

16

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

2ebe Also, designation in SBL STl of control transfer
from ST1 to SCS STl mey be accomplished by means of a
TO(NAM SCS ST1) link in any (or several) of the
process statements of SBL ST2.

2e6f In SBL ST1, designation of control transfer to
statemrnts other than SCS ST1 must be mede with
TO(NM1) 1links.

2e7 Multiple instances of identical TO(NM2) links may
represent a given program-control branching path:

2e7a These must appear at each successive level below
the highest-level instance, to represent the same
branching operation in ever-more detailed descriptive
context.

2e7b In a properly formulated program description,
the statement STM NM2 will always be in the same 1list
as the highest-level instance of the TO(NM2) link.

2e8 Multiple names, end link following, adhere to these
conventions:

2eBa Under certain comditions, a nunber of speclally
related statements may have the same name,

2e8a1 If ST1 is the lowest-level statement of a
group of statements thus having the sam* name, then
the others must lie on the source chain of ST1
(i.e., they are either SRC ST1; or, SRC(2) ST1; or,
etc.). See(X) in the discussion of process
sublists above.

2e8p Statements bearing a common name represent the
same process point, as found at different levels of
description.

2e8c It thus makes no difference, in any sense of
correct process execution, to which such statement one
assumes control to transfer via a link to that name.

2e83 But to one studying the process structure anmd
wvanting to follow a link referring to a multiply-used
name, it does make a difference., He should transfer
his attention according to the following rules:

2e8e Assume that STl contains a link to NMl; that NM1

is the name of statements ST2, ST3..., ST4; and that
ST2 is the lowest and ST4 the highest of these

17

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

statements (on the source chain from ST2).

2e8f The single general rule: Choose the first of
these statements encountered in following the bridge
chain from ST1 to ST2.

2e8g If this 1s a "reentrant link" (i.e., a branch
from within a process back to the beginning of the
process, or a recursive self-calling from within a
closed sibroutine), the statement thus chosen will be
the bridge node between ST1 ard STZ.

2e8h If it is not a reentrant link, then the chosen
STM NM1 will ve ST4, the highest-level of the chain of
NMl-named statements.

2e81 If it is a TO(NMl) link in a properly composed
program description, then (besides the foregoing) the
chosen STM NM1 will also always lie in the same list
as the branch node between STl and ST2 (and often will
be the branch node).

2e8j If ST1 contains a TO(NAM ST2) link, the
following rules affect the allowable value of LCN ST2:

2e8j1 DPT LCN STZ2 = D2 must be equal to or less
than DPT LCN STI1.

2c8j2 FLI LCN ST2 = FLI LCN STl for 1 from 1 to
D2-1. For a reentrant branch, equality also will
exist vhen 1=D2Z2.

2¢833 In other words, LCN ST2 can differ only in
its last field (armd may be equal there) from the
string of fields that 1s derived by truncating LDN
STl to a depth D2. Equal last flelds imply a
reentrant branch.

2e8j4 For example, if LCN STl = 3b»4dS5S, then some
of the allowable values for LCN ST2 are 3b4de,
3b4g, 33, 34, amd 6; and some disallowed values
are 334d2a, 3d4g2, 3b3f, 3d4 amd 6b,

2e9 Converse links exist; if statement STl links to
statement ST2 with link XXX(NAM ST2), this may be
explicitly noted in statement STZ by the converse link
-XXX(NAM ST1)., This is a complete and standard link in
its own right.

2f Discussion of process structures:

18

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

2f1l Each list or sublist may be thought of as equivalent
to a flow chart, ani therefore must provide a process
description that is complete at its particular level of
detail. In such a representation, every point where two
or more process-control paths may converge must be
associated with the start of a new (named) statement.

2f2 Concise and consistent form are important in
synthesizing, composing, modifying, and studying the
program description.

2f2za This applies to form at all structural levels:

2f2zal A several-character term within a statement,
its significance and coding.

2f2a2 The layout and terminology of statements
representing often-occurring types of processes or
descriptions,

2f2ad The roles, role-marking, and ordering of
statements in lists having common types of purpose.

2f2a4 The roles, role-marking, amd structuring of
statements and lists in structures having common
types of purpose,

2f2a5 The types of links used, and the codes that
designate these types,

2f2ab The types of tags used, their encoding, and
their placement within statements,

2g Suggestions:

2gl Tag all nonprocess statements with *c (for comment)
initially. We can supply other tags later to
differentiate between significant categories of such
statements,

2g2 Locate subroutine descriptions wherever it seems
most appropriate.

2g2a Subroutines can be categorized arnd grouped, with
several levels above the ¥sr-tagged statements, to
possible advantage,

2g2b This should not be taken as a rule for all

19

SECTION III ~~ PROGRAM~DESIGN RECORDS
PART A -~ BASIC RULES

subroutines--e.g.,, a subroutine used only within one
process might better be described urder an *sr
statement within the list.

2g3 Parameter-state designation, showing parameter PR1
to have value VL1 at a given point in the process, my be
done by writing PR1:VL1,

2g3a Use no spacing on either side of the colon.

2g3b Either punctuation or spacing must appear at the
end of the character string designating VL1,

2g3c The designation of VL1 may be abbreviated or not
according to preference, but using one urbroken
character string may avold anbiguities of statement
content,

2g3d Reserve "a" to mean "contents of accumulator,"”
vhen used as PRI,

2g3e Ixamples: index:3, Flag:neg, a:nonzero, etc.,

where the first of each pair is an already-defined
rerameter,

20

SECTION III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

1 In this part we show that computer programs, commonly
represented in flowchart form, can be equally well represented
in linked-statement structure, using the basic rules presented
in Part A above.

la We demonstrate this by presenting graphic flowchart and
linked-statement structure representations of our on-line
system,

Ib We start with an overall view of the on-line system; we
subsequently examine segments of this system,

2 Overall On-Line System

2a The overview of the on-line system is represented in
graphic form in Figure 1. The conventions used in this and
succeeding flowcharts are essentially those presented in
Ref(ACML).

2al A or ¥V represents a Jump in the logic to a
named location. The direction of the arrow indicates
where this name may be foud on the flow charts,

2ac D is the terminal symbol for subroutine
entrances amd exits,

2b The overview of the on-line system is represented in
linked-statement form in Figure 2.

2c The statement nunbers and names from Figure 2 are
repeated outside their correspording flowchart symbols in
Figure 1.

5 The Main Executive routine is shown in graphic amd
linked~-statement forms in Figures 3 amd 4, respectively.

4 The Display Frame Image subroutine, called from within the
Main Executive routine, is shown in graphic and
linked~-gstatement forms in Figures 5 amd 6, respectively.

S The routine that displays the frame image one line at a
time, which is part of the Display Frame Image subroutine, is
shown in graphic and linked-statement forms in Figures 7 and 8,
respectively.

6 The routine that samples the external devices and formats

any inputs, which is part of the Display Frame Image
subroutine, is shown in graphic and linked-statement forms in

21

SECTION III -~ PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

Figures 9 and 10, respectively,.

22

SECTION III -- PROGRAM-DESIGN RECORDS
PART B ~~ EXAMPLES

=

2 (START)

INITIALIZE
SYSTEM

3 (DCh)

INITIALIZE
EXECUTIVE
LOOP

4 (DC)

MAIN

EXECUTIVE
DECODE AND
—— EXECUTE USER [t owm= oo — e
COMMANDS

Ta- 40871

FIG. 1 GRAPHICAL REPRESENTATION: OVERALL ON-LINE SYSTEM

23

SECTION III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

O *p Online System

1 (ABBREVIATIONS) *c Abbreviations used in this writeup:
la "char" means "character code"
Iy "FWA" means "first-word address"
lc "LWA" means "last-word address"

2 (START) Initialize system.

3 (DCI) Initialize executive loop.

4 (DC) (Main executive loop) Decode and execute user commnds.
To(DCI).

FIG. 2 LINKED-STATEMENT REPRESENTATION: OVERALL ON-LINE SYSTEM

24

SECTION III
PART B -- EXAMPLES

(BEGIN)

4a (DC)

YES

de

CALL
APPROPRIATE
PF

4f

REFORMATTING
NEEDED?

DI STACKS EACH
SUCH CHARACTER
FOR LATER
PROCESSING ALSO

RETURN A:CHAR

SPACE IS THE
TERMINATOR FOR
A COMMAND-
IDENTIFIER STRING
OPERATES ON THE
6 CHARACTER STRING

LOOK UP COMMAND | _:EKE ?Y_Dl——
IN TABLE OF

VALID COMMANDS, RETURN A:INDEX

RECORD INDEX OF
ENTRY {F FOUND

WHICH MEMBER IS
SELECTED IS

DETERMINED FROM
THE INDEX OUTPUT
FROM THE CL (6)

DISPLAY FRAME
IMAGE AND GET
A CHARACTER

SUBROUTING
ot FCGEED |
PF GROUP R g RETURN |
s wni U |
COMMAND (LreToRn)
CE GROUP SIS RETURN
COMMAND EXECUTE
GROUP SETS FLAG
IF REFORMATTING
2qict o R R
15
e G
DATA R

Ta-ea007-2

FIG.3 GRAPHICAL REPRESENTATION: MAIN

EXECUTIVE ROUTINE

25

-~ PROGRAM-DESIGN RECORDS

SECTION III1 -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

4 (DC) (Main executive) Decode and execute user commands, To(DCI).

4a (DC) Call(DI), to display the frame image and get a
character from the external devices, *c DI stacks each
such character for later processing, and also returns
with i1t in the accumlator.

4 If the character is not a space, to(DC). *c Space
is the terminator for a command-identifier string.

4c Call(CL), to identify command and obtain parameters.
*c Operates on the character string stacked by DI.

44 If not a valid command, to(DCI).

4e Call the appropriate subroutine (from "parameter fetch"
group) to obtain the command's parameters.

4f Call the appropriate subroutine (from "command execute”
group) to execute the command. %*c The "commend execute'
subroutine sets a flag if reformmtting is needed.

4g If data does not need reformatting, to(DCI).

4n Call(RF), to reformat the data. To(DCI).

S (DI) #*sr Display frame image. Periodically sample the external
devices, and format any inputs., Exit a:char when a character is found.

6 (CL) #*sr Look up commard in table of valid commands. Record
the index of the entry if found. Set a:o if not found.

15 (RF) *sr Reformat data.

FIG. 4 LINKED-STATEMENT REPRESENTATION: MAIN EXECUTIVE ROUTINE

26

SECTIQN III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

5b (D1}

5¢ (DIA)

DISPLAY FRAME
IMAGE, ONE LINE
AT A TIME

54 (DIG)

WAIT IN ENDLESS
LOOP UNTIL SYNCH
INTERRUPT, TO
TRANSFER CONTROL
TO 30!

Se (301)

SAMPLE EXTERNAL
DEVICES AND
FORMAT ANY INPUTS

5f (DIH)

CHARACTER
FOUND IN
SAMPLING?

5a (DIX)

C RETURN A:CHAR)

FIG. 5 GRAPHICAL REPRESENTATION: DISPLAY FRAME IMAGE SUBROUTINE

Ta-4887-3

27

SECTION III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

S (DI) #*sr Display frame image. Periocdically sample the external
devices, and format any inputs. EXIT a:char when a character is fourd.

Sa (DIX) Exit *o
DIX JFI 1

S (DI) Entry *o
DI 0

Se (DIA) Display frame image, one line at a time.

54 (DIG) Wait in endless loop until synch interrupt occurs,
to transfer control to(30I)., *o

DIG CIL
LDN 0
ZJR DIG
CON 31
JFI 1
301
PRG

Se (30I) Sample external devices, and format any inputs.

Sf (DIH) If a character was found in sampling, EXIT a:char.

Otherwise, to(DIA)., *o
DIH ZJR DIA

NZR DIX

FIG. 6 LINKED-STATEMENT REPRESENTATION: DISPLAY FRAME IMAGE SUBROUTINE

28

SECTION III1 -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

=

5¢) (DIA)

INITIALIZE OUTPUT
PARAMETERS TO
FRAME -IMAGE
START ADDRESS

5¢2

OBTAIN LINE-
IMAGE ~LENGTH
BUFFER START

ADDRESS

5¢3 (DIB)
OBTAIN NEXT 10
LINE LENGTH 5b
FROM BUFFER (DIG)

MORE LINES?

5¢5

SET NEW
LWA = OLD
LWA + LINE LENGTH

5¢6

SELECT DISPLAY
AND OUTPUT
IMAGE

S¢7

SET FWA TO

OLD LWA. STEP
yi LINE-LENGTH
BUFFER POSITION

TA-4907-4

FIG. 7 GRAPHICAL REPRESENTATION: DISPLAY FRAME IMAGE ONE LINE AT A TIME
(Part of Display Frame image Subrautine)

29

SECTION II1 -~ PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

Sc (DIA) Display frame image, one line at a time.

Scl (DIA) Initialize output parameters to
frame~-image start address. *o

DIA LDD CDB3 DISPLAY IMAGE START ADDRESS
STF DIE FWA
STF DIF IWA PLUS 1
Sc2 Obtain line-image-length buffer start address. *o
LDD CDB2 LINE IMAGE LENGTH BUFFER START
STF DIC
S¢3 (DIB) Obtain next line length from buffer. *o
DIB IDT
DIC 0
Sc4 If no more lines (O line length), to(DIG). *o
ZJF DIG
5¢5 Set new LWA to old LWA plus line length. *o
RAF DIE
5¢8 Select display, and output image. *o
DID EXC EXCSWR
our DIF
DIE 0 LWA OF IMAGE
S5c7 Set FWA to current LWA, Step line-length buffer
position. To(DIB), to display next line. %o
TF DIF
AOD DIC
NZR DIB
ZJB DIB
DI FWA

FIG.8 LINKED-STATEMENT REPRESENTATION DISPLAY FRAME IMAGE ONE LINE
AT A TIME (Part of Display Frame Image Subroutine)

30

SECTION II1I -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

SAMPLE
POSITION
ENCODER

17

DISPLAY
m BUG-MARKS R

18
DISPLAY COMMAND
STATUS INDICATORS RETURN

DCs
19
PUSH BUTTONS

20

SAMPLE AND
KEYBOARD

21

FORMAT CHARACTER
FOR DISPLAY RETURN

AND SAVE IT

EXIT A:CHAR
(EXIT A:0)

RA-4987-8

FIG. 9 GRAPHICAL REPRESENTATION: SAMPLE EXTERNAL DEVICES AND FORMAT
ANY INPUTS (Part of Display Frame Image Subroutine)

31

SECTION III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

Se

PJR

JPR

30BI JPR

JPR

JPR

NZR

NZR
JFI

30KI JPR

(30I) Semple external devices, and formet any inputs,

Sel (30I) If system is not in "bug" mode,
to(30BI). *o

ATDMOD

30BI

Se2 (all(BF), to sample the position-encoder and
convert input (bug-mark position) to internal
coordinates. *o

BF

5e3 (30BI) Call(BD), to display current bug marks.
BD

Se4 (a11(DCS), to display current command status
indicators. *o
DCS

55 ®11(PBS), to sample external pushbuttons and
encode any input present, *o
PBS

Se6 If input is present, to(30KI). *o
30KT

57 (all(TIS), to sample keyboard and encode any
input present. *o
TIS

5¢8 If no input present, EXIT a:o ¥*o
SO0KI
1

DIH

59 (30KI) Call(TI), to format character for
d1isplay am save it, EXIT a:char. *o

TI

1

DIH

16 (BF) *sr Sample the position-encoder, convert input (bug-mark
position) to internal coordinates, and update the current bug-mark data.

17 (BD) #*sr Display current bug-marks,

21 (TI) *sr Format character for display, and save it.

*0

FIG. 10 LINKED-STATEMENT REPRESENTATION: SAMPLE EXTERNAL DEVICES
AND FORMAT ANY INPUTS (Part of Display Frame Image Subroutine)

32

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

1 SCOPE

la Both our off-line and our on-line systems may be used to
compose and modify the linked-statement structures (see
Ref(SRI1l) for deteiled descriptions of these two systems).

2 SUMMARY OF OFF-LINE SYSTEM USAGE AND FEATURES

2a Typed text, recorded on punched paper tape, is processed
off line by a program that recognizes instructions enbedded
in the text. These dircct the modification in structure or
content of any of the prior text.

2al The typist may introduce such instructions as needed
during the input typing.

242 Some of these instructions may modify or delete
other instructions.

2a3 The conventions for designating the instructions are
such that, from the printed copy, one can determine
unanmb iguously what is expected after computer processing.

2a4 After processing a cleaned-up hard copy, a printout
is provided, as well as a punched paper tape
representation,

2a5 The user may prepare a new input, referencing both
the previously processed material (in its final printout
state) and the earlier typing of this current input
material, to make modifications of either.

2a6 The paper tape from both this current typing amd the
previous computer outvut can be fed back through the
processor, to obtain a next cycle of updated printout and
Taper tape records.

2a7 In developing a body of material, cycling of this
kind can be done repeatedly.

Z2b The user has a variety of instructions that he can
employ:

2bl Insertion of a new statement anywhere in the

previous structure can be specified merely by giving it
the appropriate location number.

33

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

Z2bla No matter where a statement occurs in the input
text, the rrocessor will put it into 1ts proper
vosition as designated by its location number,

2blb Interpolative designations for the fields of
location numbers are permitted.

2blc For example, giving a statement a location
nutber 2a3.5 would designate that it is to be inserted
between Statements 2a3 and 2a4 of the existing
structure.

2b2 Simple statements may specify that any prior
statement is to be moved to a new insertion point.

2b3 Similarly, one may specify the deletion of any prior
statement (including one that represents an instruction).

Z2b4 The complete substructure of any statement that is
deleted or moved will sutomatically be deleted or moved
along with that statement.

20S Renunbering is automatically done by the processor,
so that the statements, as newly located within the
structure, have proper location nunbers without
interpolations.

Z2b6 One can designate new input to be appended to any
prior staterent, and in this new input embed directions
for the modification of that statement,

2bba This uses the Z-code conventlons described in
Ref(OSR2), allowing arbitrary insertion, deletion, or
replacement from freshly typed material or material
that has been cycled through the off-line system) may
be loaded onto the drum,

5 SUMMARY OF ON-LINE SYSTEM USAGE AND FEATURES

3a The user sits at the CRT console with the on-line
program operating and in control of the computer.

3al The paper tape record of any material (either
freshly typed material, or material that has been cycled
through the off-line system) may be loaded onto the drum,

3a2 The data thus stored in the drum can be scanned and
manipulated on the CRT display.

34

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

3a3 After such manipulation, the contents of the drum
my be punched out on paper tape for off-line printout
(Flexowriter) and for later input to either the on-line
or off-line system,

3a4 The drum full of data may also be transferred to a
storage block on magnetic tape.

3a4a An arbitrary number of such blocks mey be kept
on megnetic tape.

3b There are two types of processes available to the
on-line worker.

3bl Within the stracture contained in any given drum
load of data, he can do the following:

3bla Hop to any designated location nunber or named
statement.

3blb Scan up or down the lists of statements.

3ble Perform any of the basic operations of
inserting, deleting, replacing, moving, or copying on
any one of (or string of) the entities: chraracter,
word, line, or statement.

3bld Serd any statement ST1 to be inserted in front
of any other statement STZ in the structure, as
specified by either the location nurmber or name of
sT2.,

3ble Specify a new location nunber for a given
statement, and have the following statements
renunbered automatically.
3b2 Within the file of drum-load data blocks on magnetic
tape, the user can do the following (the blocks are filed
hy decimal serial number):

3b2a Go to to any block, by specifying the desired
block number.

3b2b Read the block into the drum.

3b2c Rewrite the block with the current drum
contents.

3b2d Go to the end of the file amd write the current
drum contents on the end of the file, as an added last

35

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

b lock.
4 RELATIVE MERITS OF OUR CURRENT ON-LINE AND QFF-LINE SYSTEMS

4a Either of the two text-manipulation systems can be used
exclusively, but there are special advantages to each in the
present states of development.

4b Straightforward modification of an existing structure is
more simply designated by the off-line techniques.

4bl One reason for this is the limitation in scanning in
the current on-line system.

4bla It is harder, when working over a large
structure, to keep oneself oriented.

4b2 When scanning some hard copy and recognizing a
change that is desired, it 1s simple to designate the
changes right on the spot, for the off-line system to
process,

4b3 A straightforward modification as designated by
off-line techniques is simple to specify--secretaries,
clerks, amd machine operators can do the rest of the
work,

4b4 In contrast, to make such a modification with the
on-line system currently requires signing up for the
rachine, loading the material, and trying to remember the
changes that were to be made.

4c When making extensive modifications with the off-line
system, it often becomes very difficult to picture the
structure as it has been newly specified so that further
additions and changes can be made. By contrast, when
working on-line, one may always view the structure in its
immediate, up-to-date state,

43 Which system one can use to best advantage generally
depends upon the state of one's work.

4d]1 Using the services of the off-line system during
first rough composition helps get the
statement-by-statement formulation generated in clean
form.,

4342 Local manipulations within a list ard within
statements are better done on line--during the
development of one's thinking, when many changes are

36

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

be ing made.

445 If changes are straightforward and a new view of the
modified structure is not needed immediately, the
off-line system serves best,

4e The aveilability and twrn-around times for these systems
establish how "current” one's working records may be,

4el At one extreme, constant availability of an on-line
system would permit all design work, including the
moment-by-moment "scratch-paper trials,” to be in the
general structured-statement form.

4e2 At the other extreme, a long turn-around time with
the off-line system would limit the utilization of
computer aids largely to an "after the fact"
documentation of detailed design work.

4e3 Even with a one-day turn-eround for the off-line
system, i1t seems feasible to keep the major share of our
system design records in a structured-statement form, and
to keep the records essentially up to date--with a
one-day lag in the availability of hard copy.

37

SECTION IIl1 -- PROGRAM-DESIGN RECORDS
PART D -- DISCUSSION

1 BASIC CONCEPTS

la The two main components to program-design techniques are
the form in which the design is recorded, and the
computer-aided processes for operating on that record.

b The particular form of the record is developed from the
basic list, name, link, and tag features of our
linked-statement conventions. The record is arbitrarily
expardable,

1bl There is a place for, or a way of tying in, every
kind of relevant informmtion--process steps, comments,
data, definitions, specifications, etec.

b2 Any character-string langusge can be used at any
level, including any forml (i.e., machine-translatable)
programming language. At higher levels in the structure,
above the programming language, free English or any
formmlly-defined language can be used.

b3 The form can be produced with a2 standard character
set on a printer or CRT display.

b4 The form itself is adaptable to future needs; the
way lists, names, links, and tags are used may be varied
for a wide range of structural forms.

b5 The nature of the form lemds itself to manipulation.

1b5a The computer processes may be neatly organized
and implemented,

1b5b The processes of the human user in conceiving
ard designating appropriate manipulation operations
are also helped by the form.,

IhSc With the stripping, translating, and debugging
improvements (discussed in Section V), this basic form
will be sultable for a designer to use for the vwhole
cycle of work from initial conceptualization through
final debugging.

1b5d The output from on-line processing is compatible
with the off-line system,

lc The processes for humn-directed manipulation of the
form may be either on-line or off-line.

38

SECTION III -- PROGRAM-DESIGN RECORDS
PART D -- DISCUSSION

lel On-line processes are fast enough so that the user
can keep within his unified design record all of the
notes and tentative design trials--moving, deleting, and
apperding so that the record reflects his
minute-by-minute progress.

lcz Off-line manipulation, although less immediately
responsive to the needs of the user, has the advantage of
being available to many more people than our real-time
work stations amd manipulating processes, The output of
the off-line system is compatible for use with the
on=line system.,

1¢S5 A computation center giving one to two runs per day
would allow updating processes that could keep much of
the design record in "current”" state. The on-line system
would surpass this most dramatically meinly in the aids
it would provide to the minute-by-minute type of work.

ADVANTAGES OF PROGRAM-DESIGN TECHNIQUES

2a The irmdividual programmer is given a new design
methodology for keeping notes, records, etc., in one uniform
structure, and for keeping these constantly in updated
"current” condition,

2al The programmer can work to depth in any one aspect;
when this aspect is under control, he can shift to some

other aspect and some other level without fear of losing
track of the state of his progress.

2a2 Temporary notes can be entered into the record and
deleted from it as needed, without either getting in the
vay or getting lost,

2a3 A new way of thinking is opened with this new
freedom to cut and try at any level or any stage of the
design.

2aZa Uniform ways of thinking and working are
augmented for every conceptual level in the design
problem, In the same way that the use of forml
program languages encourages more orderly thinking at
that level of the design, the conventions of form and
procedure throughout the rest of the design-record
structure encourage more general development of
orderly thinking.

2b A cooperating group of programmers gain similarly from

39

SECTION III -- PROGRAM-DESIGN RECORDS
PART D -- DISCUSSION

those technigues.

2bl Assume that each programmer is utilizing these
techniques and thus benefiting in his own work as
discussed above,

2b2 Commnications between individuals are much improved
if the working record of each has the completeness and
uniformity offered by these techniques.

2b3 The supervisor of such a group can use a completely
compatible record form anmd set of manipulation processes
for the design work at his level,

2b4 Under the supervisor's record form, the individual
record structures of each individual (which completely
describe his contribution) may be integrated within a
single comprehensive, uniform record.

2b5 This integration may be carried on up through an
arbitrary number of levels of supervisory control to
accommodate very large coordinated programming-system
designs.

2¢c The system, as a whole, gains a new form of
documentation.

2cl A form of "self-documenting"” system is realized; the
working records of the inmdividuals and groups provide
both the in-process documentation for their own use, and
a post-development documentation for others to use.

2cla With appropriate conventions and procedures for
maintaining the records during a design process,
little or no additional work should be required to
produce extremely good post-development documentation,

2c2 Subsequent maintenance or modification of the system
by others would be facilitated.

2c2a The record should be complete in every relevant
detail.

2c2b The organization and tagging of the record would
make it easy to locate necessary informmtion anmd to
gain the necessary comprehension reguired for
troubleshooting, or for evaluating modification
possibilities,

2c2c The manipulation processes allow flexible

40

SECTION III -- PROGRAM-DESIGN RECORDS
PART D -- DISCUSSION

modification for either minute or extensive changes.

3 COMPARISON OF THESE PROGRAM-DESIGN TECHNIQUES WITH
FLOW-CHARTING TECHNIQUES

3a A definite advantage to flow charts is the quicker
perception they provide of the "topology" of the process
flow. This advantage, however, mist be weighed against the
following edvantages of the linked-statement form:

3al The linked-statement form is easier to store anmd
menipulate in the computer and to portray on a display or
printer,

3a2 The linked-statement form does not provide any
recomposition problem as do flow charts when changes mst
be made.

Ja2a If the computer were asked to handle such
rearrangements in the flow chart, deriving and
implementing the processes for automatic arrangement
of a flow chart for easy comprehension would be
challenging.

32b An easy solution of this, of course, would be to
order the boxes ©of & flow chart in linear fashion
with arrows running up amd down the row; but this is
essentially the linked-statement form, with drawn-in
links (a possibility with which we may soon
experiment).

323 In a linked-statement record, the length of the
given statement may be arbitrary; whereas in a flow chart
the text within a box must often be overly abbreviated to
comply with geometric constraints.

324 A linked-statement record gives a more natural
inclusion of non-process information--e.g.,
specifications, usage pointers, data structure, comments,
rarameter states, and design tricks.

%5 In particular the many separate pieces of the record
will not tend to get misplaced or get in the way. For
instance, there are no separate flow charts, semarate
fragments of trial code, bits of data-structure,
synbol-assignment notes, subroutine-identification notes,

ete.

41

SECTION IV -- TASK MONITORING

1 INTRODUCTION

la An independent study conducted by our Systems
Engineering laboratory, working closely with
Informtion-Management personnel, examined our program's
aims and information needs in an attempt to identify
specific payoff areas for computer-aided information
management. Among the promising areas identified were:

lal Problem statement detailed in document form,
incluiing (where appropriate) an explicit coding
specification for programming to be done,

la2 Possibilities for algorithmic flowcharting.

1la3 A complete system-features description, including
operating instructions and user guides, maintained in an
up~to-date form,

la4 WVays of increasing the usefulness of our external
documentation citation files and references.

1a5 Ways of obtaining and hanmdling information sbout
currently assigned tasks, their progress ard
problems--"status information."

b The last of these was selected to serve as vehicle for
an intensive and detailed study leading to computer-aided
processing of status information. It was felt that this was
an acute neel of our own program's informetion system, and
should be of interest to a broader commmity as well.

Ibl We planned to implement a manual system of forms amd
procedures for status information and study this clsely,
seeing where computer aids could most usefully be
incorporated, and then implementing them in an on-line
system as soon as possible,

b2 This activity finally issued in two such schemes,
largely complementary in their functions, which were
corducted Jointly over a period of several months. These
are described in the following sections,
2 FIRST STATUS-REPORTING SCHEME
2a Rationale

2al The passage from a contemplated or planned task,

43

SECTION IV -- TASK MONITORING

into an assigned task on which work would begin, was
marked by 1ssuing a memo known as the "task description."
(Task-descriptions were issued at whatever time this
particular stage had been reached--they represented a
phase-cut in the process.)

2a2 Durng the implementation, "status reports'" marking
the progress against the defined tasks were issued at
regular time intervals. (Status reports represented
time-cuts in the process--whatever stage had been
reached,)

2a2a Stages of progress could be checked: e.g.,
design, coding, checkout, and final documentation, (in
the case of a programming task).

2a2b A given task might be either "active' or
"inactive" during a particular reporting period.

2a2c The reporting included an "estimted time to
completion," which could be revised weekly if
necessary.

2a2d There was provision for entering extra
comentary.

2a3 The completion of (for instance) a programming task
to the point where a new system feature had become
operational was announced by an "Op" memo ('"new feature
operational”); like the task description, this was a
phase-cut. This memo was issued even before final
documentation had been registered (though documentation
was considered a part of the assigned task).

2a4 With the "phase-cuts' of 2al amd 2a3, plus the
"time-cuts" of 2a2, we hoped to get an adequate
cross-sectioning of the process, which would reflect its
progress and temporal structure,

2b Implementation of the Scheme: Forms and Procedures

2bl The forms used in status-information recording were
memos extracted from our group-documentation files.
Headers were speclally preprinted; information content
was closely specified; and the documents were usually
highly formatted.

2bla. The "Task Description" memo told who had

assigned the task; which project within the program
was being charged; how long the task would prcbebly

14

SECTION IV -- TASK MONITORING

take; and the ma jor subtasks involved in completing
the task. Method of approach and any extra commentary
could also be recorded on this form. Thought and
planning, as well as write-up, were required in
issuing this docurent; it was not a simple checklist
operation,

2blb The "Status Report" memo, for registering
progress against defined and assigned tasks, was
issued to the reporter each week in an updated form,
Filling out this form usually required only entering a
nurber or letter, or checking a box, in order to
record progress to a new phase or subtask or to revise
a time estimate, If status information had not been
changed from the previous week's report, no action was
needed--excert to return the form. There was
provision for adding any extra commentary.

2blc The "Op" memo was extremely brief and highly
formatted--there was virtually nothing to write in,
except initials amd date., The header was prepared at
the time the task description was entered; at the
appropriste time--task completion to en operatioml
stage--this memo was initialed ard turned in.
Provision was made for adding comments.

Z2b2 Issuance and distribution of these forms was
procedurelly controlled:

2b2a Task Descriptions were to be entered before any
work wes begun on the task; coples went to all program
members, and to the master file.

2b2b Updated Status Report forms were distributed and
collected weekly. Coples were distributed only to the
Information-Management proJject personnel: the
originals were filed (available to any member of the
program), and used in preparing the next week's status
forms,

2b2c Op Memos were distributed immediamtely to all
program menbers, as well as being filed with the
corresponding task-description memo in the master
file.

2c Operation of the Scheme
2cl This system of status-information reporting was

instituted on a weekly basis, and operated for a periad
of 27 weeks,

45

SECTION IV -- TASK MONITORING

ed

2c2 Task descriptions were issued by each member of the
program at the time the scheme was initiated. During

most of the period of operation, two people participated
in the weekly reporting--though not always the same two.

2cd Most of the reporting concerned programming and
system-design tasks, 1.,e,, implementing system software
features. This yielded well-defined, naturally delimited
tasks., It also restricted the weekly reporting to Just a
few individwals (we wanted to try these ideas with a very
sm1l number of participants at first), and gave us
status information in an area where a real need was felt.

Results of Trial Operation

241 The most serious problem was that the information
conveyed by the status reporting proved to be of little
value, We attribute this to the fact that it was not
possible to formulate a task description realistically in
enough detail to make it a useful basis against which to
register one's progress. As a problem in managing
information, this took two forms:

2dla First, we needed ways of incorporating more
detail into the task descriptions; representing more
realistically the subtasks involved, and their complex
interrelations; amd displaying the relations to tasks
which others in the program might be working on
concurrently. This was a problem in representing and
structuring information usefully.

2dld Secondly, we needed easier and more flexible
ways of changing that task description--as the task
definition itself evolved into modified forms, anmd as
progress was made against 1t, This was a problem in
processing information usefully, and one which called
for computer help.

242 If our current structuring conventions and off-line
computer aids had been available at the time we began the
status reporting, we could have handled this problem more
satisfactorily; for they give us weys of representing
complex hierarchically-organized information, tegging and
labeling and linking it to bring out its qualitative
significance; and using computer processes to operate on
this organized information, madifying it and updating 1it.
These are Just the capabilities that were needed for a

46

SECTION IV -- TASK MONITORING

more reslistic scheme of reporting status information.

243 These off-line aids are just now getting to the
trustworthy stage. If we work up a second attempt at
status reporting, we have available a far more useful set
of tools, well adapted to the kind of informetion
problems we uncovered there. A logleal first move would
be to try framing complex task descriptions, tagged and
linked in ways that bring out the most significant
interdeperdencles; then to uce the associated off-line
computer processes to operate upon these and carry out
the modifications on them--madifications due both to the
changing nature of the task definition (for instance, as
new constraints come into view), and to the progress
marked up against the defined task.

3 SECOND STATUS-REPORTING SCHEME
3a Rationale

32l The second status-reporting scheme was concelved as
real-time reporting, with a "sign-on" when one sat down
to work and a "sign-off" when one completed it, left, or
was interrupted. The reporter would state, in his own
words, vhat he planned to do when he started working and
note what impediments (if any) were in the way of his
completing 1t when he left.

332 The format was designed specifically for on-line
use, as detailed below in 3bl; the same formt was also
used as the basis for a manually operated system , as
described in 3b3,

323 The goal was to make the whole process of reporting
as autommtic and natural as possible., Thus the report
was flexible in both its content and its timing; it was
entered whenever appropriate, with quick feedback of
information to supervisory personnel,

3a4 In particular, this scheme was to be a flag-setting
scheme, notifying of impediments or potential problems,

3 Implementation of the Scheme: Formats and Procedures

31l The autometic status-reporting format was intended
for on-line use as follows:

3bla When the system had been started up and the
on-line program had been loaded, the word "OPERATOR"
would appear on the screen, The operator would then
type in the required literal string (ID information),
followed by the delimiter,

47

SECTION 1V -- TASK MONITORING

required literal string (ID information), followed by the
delimiter.

3blb This delimiter would activate the command,
entering the literal string and bringing up the next
heading to the screen: "DATE."

3ble Each entry would bring up the next in this way,
until the sign-on part of the reporting had been
completed. (See the attached form, Figure 11.)

3bld When his work on line was completed, the
operator would type in a code for "sign-off" and the
words: "TIME OFF" would appear on the display.
Typing in the time plus the literal string delimiter
would then bring up the next item: "I ACCOMPLISHED,"
and finally, the item: "REMARKS," completing the
sign-off information.

3b2 This status data would be routed to the appropriste
parties:

3b2a The complete report, including both the sign-on
and sign-off information, wouwld be treated as a memo
to the project leader, program manager, and/or records
clerk, as appropriate.

3b2b Copies of the report would be routed to people
named or referenced by initials in the "REMARKS"
section; or alternatively, a "COPIES TO" entry could
be added to the sign-off formet, for designating
others not normally included in the status report
distribution.

33 For manual use, blank forms with the appropriate
head ings were distributed to group merbers,

3b%e The forms were kept very simple, to minimize the

chore of filling them out anmd maximize the probebility
that this would be done conscientiously.

3b3al Unnecessary entries were omitted completely.

3b3a2 Ample space and leeway were provided for the
researcher to include comments in his own words,
chosen without system constraint,

48

SECTION IV -- TASK MONITORING

OPERATOR:
DATE:
TIME ON:
PROJECT:
TASK:

I INTEND TO:

Sign-off entries should include the following: TIME OFF:

STATUS REPORT MEMORANDUM

1 ACCOMPLISHED:
REMARKS:

FIG. 11 SAMPLE OF STATUS REPORT MEMORANDUM FORM

49

SECTION IV -- TASK MONITORING

333 The "I ACCOMPLISHED" or "REMARKS" section of
the report could contain reference to any system
malfunction or limitation bearing upon completion
of the task, as well as to any organizational
problems.

3b3b Each person was to fill out the "sign-on"
section of the report as he sat down intemiing to put
in a significant amount of time on a glven task.

3b3c When he completed his objective, or before then
if he was interrupted, he would fill out the
"sign-off" section of the report.

33 Filling out of the forms was not to be postponed
and done ex post facto, for one obJjective was to
simulate the on-line situation and obtain some
feedback useful for on-line instrumentation.

3¢ Operation of the Scheme

3cl This secornd scheme of status iInformation reporting
was instituted in its manual (or off-line) form, and
comucted concurrently with the first scheme for a period
of about twelve weeks,

3¢c2 One member of the program, whose use of the forms
was very faithful, found that the timing varied from
several sign-on amd sign-off periods within the same dey
to several days on the same reported segment of work,

3c3 The filled-out forms were given to
Infornation-Management project personnel; they were
examined, armd occasionally brought to the attention of
the program manager before being filed, No problems were
flagged down by this means, however,

3d Results of Trial Operation

3d1 On-line imnlementation of this scheme would have
made a significant difference in its operation and
results; in fact, no falr and realistic evaluation of the
scheme can be mede without on-line experilence, for which
it was tailored. This 18 especially true in its method
of entering status information, aml of routing it

appropriately.
332 Because this type of report serves mainly a

"flagging" function, it does not rely explicitly upon an
adequate "task description,” as the first scheme did.

50

SECTION IV -- TASK MONITORING

That is, it does not need to face the problem of framing
an adequately representative and flexible task
description, yet it does presuppose existence of such a
description in the background in order to be maximally
effective ard yield significant information. When the
problem of task definition has been more satisfactorily
resolved, this second scheme of extracting status
information looks very promising, ard probably should
receive on-line implementation ard testing.

4 CONCLUSION

4a Our initial model for obtaining status information about
a programming process distinguished three points where
written information should be entered into the record: the
transition into the active phase, marked by a "Task
Description"; the "Status" reports at time intervals during
the implementation; amd an "after-the-fact" final
documentation,

4b One very serious oversimplification in this model is
that it overlooks the temporal interleaving of these phases;
they do not occur in any simple temporal sequence. Much of
the "final documentation'” is actually done during the
implementation stage; in fact, even the task definition is a
useful part of the complete documentation that might finally
be retained in the record.

4c Ideally, program documentation ard status information
about the programming should "fall out" as a natural product
of the methodology followed throughout the
design-ard~-programming process. This 1s one of the issues
at stake in the linked-statement design records described in
Section III.

41 We would like (ideally) to manage status information amd
documentation in ways that made them virtually
indistinguishable from the substantive work of design ami
programming--so interwoven in the programmer's methodology
that the documentation would be the very framework within
which he builds his work. This would not be a documentation
scheme which would "reflect" his substantive work; but
rather, a documentation which would "display" the current
(and evolving) state of his substantive work.

51

SECTION V -- FUTURE POSSIBILITIES

1 INTRODUCTION

la A new on-line computer system has been ordered. This
will have a general effect upon the course and scone of our
work.,

lal Delivery: 1 July 685.

la2 Central processor: CDC 3100; 8k by 24-bit, 1.75
usec core memory with three I/0 channels.

1la3 Peripheral equipment:
la3a Both paper tape and punched card I/0.
1la3b IBM 1311 disk file (2,000,000 characters).
la3c Two magnetic tape transports.
la3d Line printer.

la3e Straza character generator (arriving 1 April
65)--display scope ard on-line input terminals will be
the same as at present.

b We plan to incorporate both a list-processing and a
string-processing language facllity to work compatibly
within common programs.

le The on-line printer will meke a difference in both our
on-line and off-line text-manipulation systems,

lcl Immediate aveilability of selective printout for the
on-line worker offers interesting possibilities for
alding and expanding his working methodology.

lc2 We plan to implement the off-line text-manipulation
program, probably as the first program in the new system.
The improved accessibility will give us much quicker
recycling of our working text.

ld We plan to evolve time sharing in easy stages. The
first application would probably be to allow our off-line
text-manipulation processes to go on as interleaved
backgrourd work while the on-line system is being used.

2 PROGRAMMING METHODS

53

SECTION V -- FUTURE POSSIBILITIES

2a General Evolution from the Present State.

2al Our intended usage of the techniques described in
this report will stimulate a steady stream of new needs
and possibilities affecting conventions, style,
processes, and working methods.

2a2 We feel that such evolution could actively and
profitably be pursued for many months,

2ad3 For instance, we have only begun to explore the use
of links and tags. At a given point in a process design,
specifications, resources, constraints, etc.,, described
in other portions of the record, influence the design; it
would probably be valuable to install appropriate types
of links, to provide convenient records of the influence
of these factors.

Z2b Stripper-Translator

Zbl Embedding the actual source code within the design
record provides homogeneity in both the documentation and
the design process.

2b2 It would be wasteful to require a keypunch operator
to transcribe source code from this design record, so we
plan to develop a '"stripper" program to pull out the
source language in a form suitable for input to the
translator.

2b3 (Pl) *p Stripping Processor--A recursive subroutine
to strip out source code from the design-record structure
is relatively straightforward,

2b3a *c Directed at a process statement, this
subroutine will strip out, in appropriate order, all
of the source code in the list and its substructure.

Zb3al We assume OSAS source code in the
description below.

Zb3a2 STl is the head of the list and 1s given as
a parameter to this process,

2b3a3 Let ST2 be the current statement being
examined at any time by this processor.

2b3a4 Terminology as from Ref(SRIl): SBH ST2 is

the head statement of the sublist of statement STZ;
TAL ST1 is the tail statement of the list

54

SECTION V -- FUTURE POSSIBILITIES

containing statement ST1; and SCS ST2 is the
list-successor of statement ST2.

2b3 (Pl) Setup.
2b3bl ST2=STI1,
2b3c (P1ll) If ST2 has a *c tag, TO(P12),
2b3d If ST2 has an *o tag, TO(Pl3),
2b3e CALL(Pl) for SBH ST2.

2b3f (P1l3) Strip OSAS from asterisk to emd of
statement.

2b3g (Pl2) If ST2=TAL ST1, exit.
2b3h ST2=SCS ST2, TO(P1ll).

2c Cross Referencing between ObJect~-Code Listing and Design
Record

2cl Information contained in the design record would
often be valuable during debugging,

2c2 The listing amd the design record will contain the
same reference names,

2¢3 The computer can then aid in on-line cross
referencing as follows:

2cZa A modification of our on-line system would
ensble the user to scan and manipulate text in the
format of the obJect-code listing,

2¢® In this format, a machine eddress would become
the equivalent of a location nunber; a symbolic name
or label would become the equivalent of a statement
name,

2c3¢c Scan ad hop commands on location ard name would
thus be available over the obJect~code listing.

2c3d Cross-record processes could be developed that
would allow hopping from one record to & named
statement in another record, to provide effective
cross referencing,

2c4 More natural cross reference could be cbtained by a

55

SECTION V -- FUTURE POSSIBILITIES

slightly different arrangement--integrating the
translator output back into the design record.

2c4a A special link type (e.g., "*listing") could be
used to link from any statement containing an *o tag
(or other source-code tag) to the correspomding point
in the obJject-code listing.

2c4b Normel scanning of the record would show the
source code enbedded in the lowest levels of the
design record structure.

2c4c A special scanning mode would not show the
source code, but instead would automatically follow
the "*1isting" links to locate and show, as the lowest
level, the translated object code.

24 On-Line Executing and Debugging

2dl For completeness, these cross-reference aids should
be accompenied by the ability for the user to execute and
modify operating programs on line,

2d2 A natural operating system for this would allow the
user, when viewing the design record, to select a process
statement (at any level), stipulate the necessary entry
rerameters, armd have the appropriate section of code
executed.

2d2a Special aids would be available to help the user
establish the desired entry parameters.

2dcb If execution were normal, the resulting
parameter states could be displayed amd (if desired)
used as the input parameters for the next process
step.

2d2c If the process did not execute properly, the
user could drop down to the sublist of this process
statement and begin executing these statements, one at
a time, to isolate the trouble.

243 Special processes to aid on-line debugging, such as
help in establishing program patches, would be a natural
addition to the above aids.

244 *c Both of the above feature (statement execution
ard on-line patching) have previously been developed and
used in DDT--the on-line (typewriter) debugging aid for
the PDP series of computers.

56

SECTION V -- FUTURE POSSIBILITIES

245 On-line stripping, translating, and reintegration of
the obJject code are also important features to plan for.

2e We plan to develop our on-line system further along
these general lines.

Indexing and retrieval for our external documents,

3a In our original task breakiown, we had divided the
Information-management problems in our program into three

types:

3al A personal documentation system (PDOC) in which an
individual could get help in managing his own working
information.

3a2 A group documentation system (GDOC) for menaging the
information representing interpersonal and group working
records,

3a3 The external documentation system (XDOC) for
managing the information that the group collects from the
outside world.

3b The activity in the status reporting and program
documentation areas all lie in the categories of PDOC amd
GDOC system work,

3¢ Over the past five years, we have collected (mostly
under AFOSR sponsorship) some 1800 bibliographical items of
external reference data relevant to computer-aided problem
solving.

3¢l These have all been entered into our system in a
standard formet.

3c2 They have all been punched on paper tape through the
years as the collection grew.

3c3 At present, they are filed only by chronological
accession number and by a (menual) author card file,

3d The information structuring conventions and
computer-aided manipulation processes already described in
this report and Ref(SRI1l) would be basically sdequate for
organizing these items into a structured fille,

231 The format of the individual entries is completely

57

SECTION V -- FUTURE POSSIBILITIES

compatible with the conventions of both our off-line and
on-line system, for each to be handled as a separate
item.

3d2 The present file is a one-level structure (composed
of Just one long list).

X3 A simple computer program could give each item a
nare (in our special sense of the term); this would be
its current accession number,

3d4 An initial categorization structure could be
developed.

3Xd4a Such a structure could be one level deep in some
areas, many levels deep in other areas,

X4 It need be only tentative, for our techniques
would allow us later to modify the structure very
easily.

35 Our manipulation techniques would let us scan the
list and send each statement to some designated position
in the structure.

Xd5a For the first few passes, where items mey be
moved within a very large file (in terms of our
current work data capacity), we would likely have to
use our system in special, tricky ways.

3450 Once the statements became fitted into the
structure so that individuwel category lists were
mnageable within our working file size, there would
be little problem in moving statements among lists.

36 Our present on-line system could accommodate a
substructure of the overall file containing up to 60 or
70 bibliographical items,

37 In our on-line system, any number of such blocks of
data, representing substructures of the large structure,
can be stored on the magnetic tape. This would provide
access at tape-scan speeds, allowing easy study,
extraction, or modification of any block.

3d8 The first blocks on mag tape could contain the
high-level structuring for the total file; thus they
could represent a category imdex for the blocks that
contained the data substructures.

58

SECTION V -- FUTURE POSSIBILITIES

3¢ On-line searching, updating, and restructuring.

3el The on-line techniques for structure scanning can

give fast search through the index or other structured
blocks.

3ela Structure scamning allows scanning down any
given list (at any desired level), and being able
instantly to drop to a level below any designated
statement seen on the current list, Ref(SRI1).

3elb This immediately gives us the basic "tree
selection" technique.

Je2 Our conventions for using tags provide a ready-mede
technique for attaching descriptors to any item or
stetement at any level in the structure, and the planned
general tag-search process would give flexible retrieval
on a descriptor search basis,

3e3 Our conventions for naming and linking, and the
processes for link hopping on-line (i.e., for
automtically hopping to the statement referred to by a
link), would provide yet another search technique.

3e3a This provides directly for the "associative
trail" technigues prescribed by Bush in his classic
"Memex" paper, Ref(Bushl), Ref(OSRl).

33 The use of different link-type tags (i.e., the
printing characters preceding the open paren of a link
term) would allow us to give imiividual trails
separate identity, and to categorize the types of
trails,

3e3c Following a trail within the 70-item current
working file limit would be simple. One would point
the light pen at a link term and strike the hop code.
There would then be a walt of no more than a secord or
two to view the linked-to statement in its resident
location within the structure.

4 REFERENCE MANUALS

4n. Introduction

42l In our program, we have many equipments, programs,
and user systems whose features are changing.

4a2 Our usage of equipment, software, and user systems

59

SECTION V -- FUTURE POSSIBILITIES

shifts; this means our requirements and dependence upon
reference information are continuously shifting also.

4ad A reasonable area of information-management focus
with our program would thus be conventions and procedures
for structuring, updating, and referencing special
materials,

4a4 There would be two main types of users:

4a4a The "off-line" user, who would refer to hard
copy.

4a4b The "on-line" user, who would hop and scan
within computer-held reference material.

4a5 The work of organizing, structuring, and modifying
the records (for either the off-line or on-line user) can
be aided by both our on-line and off-line systems,

4 Organizing anmd Structuring the Reference Material

4bl The hierarchical structuring, the cross-reference
linking, and the tagging of statements all offer
extensive possibilities for organizing, relating, and
identifying the various types of information needed in a
reference document.

4b2 For initial experimentation with these features, the
processes and procedures already described for our
on-line and off-line manipulation of structured text are
quite adequate.

4b3 Existing reference documents--e.g., programming or
equipment manuwals:

4b3a One approach to these would be first to
transcribe the document directly into machine code, in
its original format.

3> Once in machine code, either our off-line or
on-line system could be effectively used to structure
the information, reorganizing it and establishing
reference links and tags as desired.

4b4 The features of both systems provide considersble
facility for modifying and uplating reference records
repidly and efficiently.

4c Hard Copy Reference Records

60

SECTION V -- FUTURE POSSIBILITIES

4cl Selective-depth printout

4cla The printout processes that operate upon a
structured record will soon inclide the facilities for
Printing out only statements above a specified depth.

4cldb A two- or three-level printout would thus
provide an effective table of contents (irdeed, to
make 1t more like a table of contents, the page number
at which each statement's substructure is to be found
could automatically be attached to each lower-level
statement in the limited-level printout).

4clec This operation of "limited-level table of
contents printout’ might well be nested:

4clcl When one turned to the referenced location,
he would find a limited-level printout of the
substructure--1i.e., the table of contents of that
substructure.

4clc2 This could be continued for subsequent
levels.

4cld This type of printout should be explored for
providing new ways to study or reference a record,

4c2 Automatic Cross-Reference Updating

4c2a Cross-reference links, when printed out, could
autometically be supplied with the page nunber of the
linked-to statement,

4c2b This would encourage liberal use of cross
references within a record, since their updating
(after the record had teen modified) would be entirely
automatic,

4¢3 Tags would be some help (although not nearly as much
as for the on-line user).

44 On-Line Reference Facility
441 Basic Operations:
4dla Structured scanning, which allows scanning to

limited depth, with immediate selective changing to
new depth limits at any point.

61

SECTION V -- FUTURE POSSIBILITIES

4d1b Chain scanning, which lets one scan over the
successive statements of specified chains--e.g., the
source chain of a given statement, or the chain that
follows a given type of linkage through the structure.

4ilc Link hopping and location-number hopping, which
allow instantaneous jumps to other portions of the
record,

4d)d Tag searching, which provides for hopping to
successive occurrences of given tagging
configurations; this gives descriptor-search facility.

4dle Synbol-string searching, which provides for
hopping to successive occurrences of a specified
synbol string.

4d2 Factors to Explore:
4d2a Organizing and Structuring:

4d2al The ways to organize reference data into
hierarchical structure,

4d2a2 The different types of links and the ways to
use them,

432a3 The different types of tags and the ways to
use them,

4d2b Reference, Stuly, and Search,
432bl1 The methods of thinking and working that
most effectively harness the above features of
structure and operation.
442b2 The processor features that best utilize the
clues provided by structure, linkage, and tagging,

412b3 The best set of operations (to be initiated
by specific commands) to provide an efficient
facility for following the procedures and methods,

4e Our approach will be a natural exploration of the

62

SECTION V -- FUTURE POSSIBILITIES

several avenues in parallel as we try to use our developing
techniques to best advantage in our own work.,

63

BIBLIOGRAPHY

1 (ACMl) Rossheim, Robert J, "Report on Proposed American
Standard Flowchart Synbols for Information Processing,"
Communications of the ACM, Vol. 6, No. 10 (Octcober 1963), pp.
599-604,

2 (BUSH1l) Bush, Vannevar, "As We May Think," The Atlantic
Monthly, Vol. 176, No. 1 (July 1945), pp. 101-108.

3 (ESDl) Bourne, Charles P., "Research on Computer Augmented
Information Management," Final Report, Contract AF
19(628)-2914, SRI ProJject 4506, Stanford Research Institute,
Menlo Park, California (November 1963).

4 (OSRl) Engelbart, D. C., "Augmenting Human Intellect: A
Conceptual Framework," Contract AF 49(638)-1024, SRI Project
3578, Stanford Research Institute, Menlo Park, California
(October 1962), AD 289 S6S.

S (OSR2) Engelbart, D. C., "Augmenting Humen Intellect:
Experiments, Concepts, and Possibilities," Summary Report,
Contract AF 49(638)-1024, SRI Project 3578, Stanford Research
Institute, Menlo Park, California (March 1965).

6 (SRI1) "User's Guide, Man-Machine Information System,”

Stanford Research Institute, Menlo Park, California (April
1964).

65

APPENDIX A

Appendix A

USER'S GUIDE
MAN-MACHINE INFORMATION SYSTEM
(Revised June 1965)

CONTENTS

II

III

v

INTRODUCTION+ & v v v v o o o o &

LINKED-STATEMENT STRUCTURING:

CONVENTIONS ., ¢ ¢« v v ¢ o o &

ON-LINE TEXT MANIPULATION SYSTEM . . .

A,
B.
C.

Introduction
Operating Procedures

On-Line Computer Equipment

OFF-LINE TEXT MANIPULATION SYSTEM

A,
B.

C.

Introduction
Statement-Structure Modification . .
1. Procedures for Entering Material
2., Preparing Copy « « &

3. User Guide « + 4+ « + &

4, Operator Instructions ., . .

Editing Within Statements: The Z-Code

1, Z-Code Reference Summary

2, Teletype Conventions

TERMINOLOGY AND

A=-7

. A-17
A-17
A-19

. A-27

. A-35
. A-35
. A-37
. A-37
. A-40
. A-47
. A-53
. A=56
. A-56
0 A-63

SECTION I -- INTRODUCTION

1 The Man-Machine Information System is aimed at improving the
work performance of a programmer by the use of computer aids,
many of them real-time, Although a programmer is the main
target for the work, many of the processes have a wider
applicability.

2 This manwal describes the current state of the system, which
is in continuous development. The manual is published in two
forms--in a looseleaf notebook and in a fixed binding.

2a The looseleaf form is intended for those who will use
the system,

2al Such users will receive, when appropriate,
modifications and additions to this menual to keep their
copy updated with the status of the system,

2b The fixed binding version of this manual is for

informa tion purposes only. New versions will be issued from
time to time as significant additions are incorporated into
the system,

2c Requests for further copies of this manual in either
version should be made to Mr. W. K. English, Building 314b.

3 The stimulus for the design of the system has been the
Institute 's research program on "Augmented Human Intellect."

3a The initial conceptual framework for the Augmented Human
Intellect Stuly was supported jointly by the Air Force
Office of Scientific Research (AF 49(638)-1024) and
Stanford Research Institute over the period from 1961
onwards,

4 In this manual, the system 1s broken down into several
components that have been developed under various contracts to
form a coordinated whole,

4a This particular version of the User's Guide is asserbled
specifically to accompamy the March 19, 1965 report of the
ESD project.

4 The sections describing the conventions anmd procedures

SECTION I -- INTRODUCTI(N

for program-design documentation are missing in favor of the
more complete writeup in the report itself,

S The contents are arranged in the following categories:

Sa The conventions, concepts, and definitions for the
linked-statement structure form.

5al Essentially all of our text is now composed ard
manipulated in this form; thus our computer-aided
processes are oriented specifically toward manipulating
this i)‘orm of text (although they will also handle other
forms).

5 The procedures and processes available on our on-line
system for menipulating our working text, and the equipment
comprising our on-line facility.

Sc The procedures and processes avallable on our off-line
system for manipulating our working text.

6 Currently both the off-line and on-line systems work with
reper-tape input and output.

6a The paper-tape output is the result of the operations
done upon the paper-tape input text and can be printed on
the Flexowriter to obtain correspording hard copy.

6b The paper-tape output of either the on-line or the
off-line system is compatible as input to either system for
a next stage of manipulation.

SECTION II -- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

1 These conventions and terminology for linked-statement
structuring were developed urder the sponsorship of the
Advanced Research Projects Agency.

2 Statements.

ca

Any appearance of the sequence CARRETURN CARRETURN

NUMERIC is assumed to signal the beginning of a new
statement, with the NUMERIC as the first character of the
first "word.,"

2b

2c

The length of a statement is arbitrary.

The composition of a statement is arbitrary, with the

following explicit exceptions:

ce

2cl Special requirements for Location Numbers
see(LOCNUMDF), Names see(NAMDEF), Tags see(TAGDEF), and
Links see (LINKDEF) are described below.

(LOCNUMDF) Location numbers,

2dl The first word of a statement is its location
number; its first character is a digit.

2d2 The location number is composed of a string of
digits and alphabetics, with no spacing gaps included.

2d2a A "field" in the location number is a continuous
string of alphabetic characters, or a continuwous
string of numeric characters, broken possibly by a
period or a comm,

2d2b The characters in a given field imdicate the
ordering on a unigque list in the structure of
statements see(STRUCDEF).

243 The location nunber represents the unique location
of its statement within the structure of statements,

(NAMDEF) Names.
2el A name may be associated with any given statement,

2e2 The name is enclosed in parentheses and is the first
printing string after the location number,

2e3 If an open paren is the first printing character

SECTION I1 -- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

after the location nunber, it is assumed to signal the
presence of a name.

2e4 The name may contain no spacing gaps--i.e., there
will be no spacing gaps between the parentheses,

2eS The choice and sequence of printing characters
composing a name 1s arbitrary.

2e6 The length of a name 1s limited to 16 characters
(printing or non-printing). This is an arbitrary and
tentative 1limit.

2f (TAGDEF) Special words called "tags" may be included
within a statement; they may serve as descriptors, etc.

2fl As many tags as desired may be included within a
statement.

2f2 They mey be located anywhere after the location
nunber and name,

2f3 Each is identified by the sequence SPACINGAP
ASTERISK n-PRINTCHARS SPACINGAP.

2f4 There is no restriction on "n," or on the
composition of a tag--except that no spacing gaps my be
incluled.

2g (LINKDEF) Special words called "links" may be included
within a statement; they serve to establish cross-reference
linkages to other statements.

2gl As many links as desired may be inclujed within a
statement.

2g2 They may be located amywhere after the location
number and name.

2g3 Each is identified by the sequence SPACINGAP
n-PRINTCHARS OPENPAREN m-PRINTCHARS CLOSEPAREN
SPACINGAP-OR-PUNCTUATION.

2g4 The parens enclose the name of some statement,
see (NAMDEF),

2gS The PRINTCHARS preceding the OPENPAREN represent the
"link type" code string; this string may be of arbitrary
length and composition-- except that no spacing gaps may
be incluied.

SECTION II -- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

3 (LISTDEF) Lists of Statements.

3a Any statement STi may have a 'list successor," which is
another statement,

3b The sequential string of statements formed by the
successor of a statement, by its successor, etc., until
finally a statement is reached that has no 1ist successor,
is called a "list of statements,"

3¢ The first statement on such a sequential list of
statements is called the "head statement"” of the list,

3 The last statement on such a sequential list of
statements 1s called the "tail statement" of the list.

3e A list may contain an arbitrary number of statements,
but nust have at least one statement,

3f For each statement in a given list, the last field of
the location number indicates the statement's location in
that list.

3f1 Interpolative breaks (e.g., 2f1.,5) my appear in a
field of the location number; in this case the nunbers
indicate only the relative location.

3fla A special interpolation convention is needed in
order to insert something before the head statement of
a list,

3flb Let a COMMA, when used as an interpolative break
in a field, designate that the interpolation is to
come before (rather than after) the statement
indicated by the field characters up to the
interpolative bresak.

3flc Example: 3bl,5 (or: 2a,e) would belong in front
of, and at the same list level as, 3bl (or: 2a),

3f2 A list in which the location numbers are in "clear
ordinal" state will have no interpolative breaks in the
last field; this field will then indicate the true
ordinal location in the list.

4 (STRUCDEF) List Structures of Statements.

4a. Various structurel relations are already implied:

A-9

SECTION

I1 -- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

4b

48]l Sequential association within a list,
4a2 Inter-statement links, see(LINKDEF),

4al2a Any statement may be linked to any other in this
manner,

Besides this, there is hierarchical structuring.

4bl Each list of statements may be a sublist of one (anmd
only one) statement,

42 That statement is known as the "source statement" of
that list.

43 The location number of every statement on such a
list will differ from that of its source statement only
by the addition of one more field.

4b4 Any statement in that 1ist may be the source
statement for a sublist of 1ts own, etc., to arbitrary
deypth.

4bS The sublist of a statement, and the sublists of the
sublist statements, etc., form the "substructure" of the
given statement.

S5 Terminology Conventions.

Sa About the cholce of mnemonics: each entity described
below has a name that is generally accepted and usually easy
to remember, The three-character mnemonic term for
designating an entity is derived from this name by means of
the following rules:

5al The case of any alphabetic character within a
memonic is not significant.

Sa2 For a one-word name, take the first three
non-repeated, non-silent consonants,

53 If there are not enough consonants, include the
first phonetic vowels, ordered with the consonants as
they appear in the word.

5a4 For a two-word name, take two characters from the
first word, and a third character from the second word,
according to the two rules above.

55 For a word and a number, take two characters of the

A-10

SECTION II -- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

word (as above) and append the number--even if the number
is several characters.

Sa6 For two words and a nunber, take one character from
each word, and append the number--even if the number is
several characters.

5a7 If two names would produce the same 3-character
mnemonic, use this mmemonic for the name which precedes
alphabetically. For the other mmemonic, try rejecting
its second character and picking another character, for a
new second or third character, according to the selection
rules above.

Sb Basic Entities,
Sbl Let ST1, ST2, etc., refer to arbitrary statements.

Sbla The integers carry no implications as to the
structural relationship between the statements,

Sb2 Let LN1, LNZ2, etc., be used to represent arbitrary
Jocation numbers.

503 Let 1Fl, 1F2, etc., refer to the first, secord,
etc., fields of IN1; amd 2Fl, 2F2, etc.,, to the first,
second, etc., fields of LNZ.

Sb4 Let NM1l, NM2, etc., refer to arbitrary statement
names,

S5 Let LS1, LS2, etc., represent arbitrary lists of
statements.

Se¢ Operations--where an operation on one entity represents
another entity.

Scl General:

Scla let LCN ST1, LCN ST2, etc,, represent the
location numbers of statements ST1l, ST2, etc.

Scld Let STM LN1, STM LN2, etc., represent the
statements whose location numbers are LN1, LN2, etc.

Scle let STM NMl, STM NM2, etc,, represent the
statements whose names are NM1, NMZ, etc,

Scld Let NAM ST1, NAM ST2, etc., represent the names
of statements ST1l, ST2, etc.

A-11

SECTION II ~- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

Scldl Let NAM STl be ZERO if STl has no name.
Sc2 Filelds within a location nunber:

Sc2a Let FL1 LN1, FL2 LN1, etc., represent the first,
secord, etc., fields of location nunber LN1.

Sc2b Let FL(expression) LNl represent the nth field
of LN1, where n is the numeric obtained by evaluating
the expression.

Sc2c Let FLi LN1, FLJ LN1, etc., refer to the ith,
Jth, etc., fields of LNI.

Sc2d Let FLT LN1 represent the last (tail) field of
ml‘

S5¢3 The depth of a statement--the level down from the
top of the structure at which it lies--is an integer.
The topmost level (location numbers of 1,2,etc.) has a
depth of 1; the next level down (location numbers of 1lb,
44, etc.) has a depth of 2, etec.

Sc3a Let DPT ST1, DPT ST2, etc., represent the depths
of ST1, ST2, etec.

Sc3 Let DPT LN1, DPT LN2, etc., represent the depths
of STM LN1, STM LN2, etc.; these should always be
equal to the number of fields in LNl IN2, etc.

5c4 To represent a statement having a particular
structural relationship to another statement:

Sc4a SCS ST1, successor of STl (1list successor).

Sc4b PRD ST1, predecessor of STl (list predecessor).

Sc4c HED ST1, head of the 1list containing STI.
Sc4d TAL ST1, tail of the list containing STI.

Sc4e SBH ST1, sublist head of STl--the head statement
of the sublist of STI.

Sec4f SBT ST1, sublist tail of STl--the tail statement
of the sublist of STIl.

Sc4g SRC ST1, source of STl--the source statement of

A-12

SECTION II -- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

ST1.

5¢5 To represent a list having a particular structural
relationship to a statement:

ScSa. LSC ST1, list containing ST1l--the entire list of
statements.

SeSb LSF ST1, 1list from STl--the list of statements
including ST1, SCS ST1, etc., down to and incluling
TAL ST1.

ScSc LSB ST1 ST2, 1list between ST1 and ST2--a binary
operation, representing the 1list that begins with ST1
amd er)xds with ST2. (ST1 amd ST2 must be in the same
list.

S5e¢5d LST ST1, list to STl--the list of statements
from HED ST1 through PRD STI.

S5cS5e SBL ST1, sublist of STl--the entire list.

5¢5f SRL ST1, source list of STl-=the list containing
SRC ST1.

5¢6 To represent a statement having a particular
relationship to a list:

Sec6a HED LS1, head of LSI1.

S5¢6b TAL LS1, tail of LSI1.

S5c6e SRC LS1, source of LS1.
Sc7 Relating a list to a list:

Sc7a SRL LS1, source list of LSl--the 1list containing
SRC LS1.

54 Concatenated operations.
541 Notation:

Sdla An operator may operate upon an entity that is
represented as the product of another operation.

Sd1b Two successive operator terms separated by =&
spacingap imdicate that the entity represented by the
rightmost operation is to be operated upon by the
preceding operator term,

A-13

SECTION II -- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

5d1c Obviously, the product of the rightmost
operation must be an entity upon which the preceding
operator can validly operate.

5114 An Integer n, or an expression representing such
an integer, appearing between parentheses after an
operator, designates n successive applications of that
operator.

Sdle Any other printing character or chareacters
appearing between two operations indicates that they
are not to be concatensted.

541f Some reasons for this notation:
541f1 Spacingaps between concatenated terms are
desirable so that long chains can be conveniently
broken by line spacing without any complications.
541f2 Prefix Polish notation offers a good
precedent. (So does suffix notation--we
arbitrarily selected prefix,)

542 Examples:

532a LCN TAL SRC STl is the location number of the

tail statement of the list containing the source

statement of STI.

532b SCL ST1 = LSC SRC ST1.

5d2c SBL ST1 = LSF SBH ST1.

5124 LST ST1 = LSB HED ST1 PRD ST2.

Sd2e FL(DPH LCN ST2) LCN ST1 is the field of LCN ST1
at a depth correspording to the last field of LCN ST2,.

Se Special entities and relationships:

Sel The "source chain" of STl is composed of ST1l, SRC
ST1, SRC(2) ST1,..., SRC(DPT ST1) ST1.

Se2 The "branch chain" from STl is composed of LST ST1,
tied onto the emd of LST SRC ST1l, tied onto the emd of
LST SRC(2) ST1, etc., to the head of the top-level list
of the structure,

A-14

SECTION II -- LINKED-STATEMENT STRUCTURING:
TERMINOLOGY AND CONVENTIONS

Se3 STl is said to be "structurally above" ST2 if ST1 is
a menmber of the branch chain from ST2.

Se4 ST1 is said to be "structurally below' ST2 if ST2 is
a menber of the branch chain of STI.

5e5 STl is said to be "branch related" to ST2 if either
statement is a menber of the other's branch chain,

Se6 STl is said to be "branch indeperdent" of ST1 if
neither statement is a menber of the other's branch chain
(i.e., if they are not branch related).

Se7 STl is said to be the "branch node" between
statements ST2 and ST3 if it lies in the branch chains of
both ST2 and ST3, and if it is below every other
statement that does so.

Se7a The branch chains from any two statements in the
same structure will always meet to produce such a
node,

Se7™ The branch node between two branch-related
statements will be the "upper' of the two
statements--i.e,, the one which is structurally above
the other.

Se7c Let BRN ST2 ST3 be a symmetrical, binary
(two-parameter) operator whose result represents the
branch-node statement (e.g., ST1 = BRN ST2 ST3 = BRN
ST3 ST2.

Se8 The "bridge chain" from ST1 and ST2 is the
concatenation of the section of the branch chain of ST1
from ST1 to BRN ST1 ST2, with the section of branch chain
of ST2 from BRN ST1 STZ to ST2.

A-15

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART A -- INTRODUCTION

1 Various segments of this on-line system have been deve loped
under different sponsorship, according to the pursuits of the
respective projects.

la The basic working system was developed and programmed
urder the sponsorship of the Advanced Research Projects
Agency. This inclules the routines for storing data on drum
and tape; for iInputting and outputting; anmd for executing
the higher-level commards that operate on statement
structures and tape files.

Ib A project from the Natiomal Aeronautics and Space
Administration developed and programmed those parts of the
basic operating system that handle the core-held "current
data'"; the interface and interpretive routines that service
the display and commnd-designation operations; and the
baslic editing routines.

2 With this system, one can load an arbitrary nurber of
working records (each up to 18,000 characters in length) onto
magnetic tape by typing at the on-line keyboard, or by reading
in paper tape from any of our paper-tape-punching typewriters
or from the output of our off-line system,

2a The system will hardle a variety of text forms
(incluwding the normel sentence-paragraph form), but a number
of its special features are specifically designed for the
linked~statement form.

3 With the CRT display as a very mobile 'window" to scan a
record, and with the computer to maneuver the window and alter
the record in instantaneous response to his directions, the
user can study amd/or modify any such record with great
facility.

4 He mey access any of his working records, for study and
modification; or make an internal copy, for imdeperdent storage
and alteration as a new record; or extract from a nurber of
such records, merging them to form a new record.

S At any time he may punch a record onto paper tape, to be
kept permanently if desired. At any later time he may then use
this tape to re-enter this information back into the on-line
system; to type a printed version on the Flexowriter; or as an
input to the off-line system.

6 Once the equipment has been turned on, and the on-line
program has been loaded and initiated at the computer, the user

A-17

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART A -- INTRODUCTION

directs all further system actions from the work station (the
CRT display, keyboard, etc.) by means of successively
designated commands,

6a Fach command is executed immediately.

b The function of the commnds, individually amd
collectively, has been designed to be maximally useful in
the task environment of working with the linked-statement
structures that represent our working records of plans,
specifications, computer-program design records,
system~-reference documents, external-document reference
files, report drafts, ete,

6c Each commnd is designated by a simple, convenient
combination of keyboard-character strokes amd
screen-selection actions (with light pen or table cursor).

6d *c A sizeable portion of our research effort continwelly

goes toward improving the repertoire and designation means
of these commarnds.

A-18

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART B -- OPERATING PROCEDURES

1 Various segments of the on-line system have been developed
under different sponsorship, according to the pursuits of the
respective projects.

la The basic working system was developed and programmed
under the sponsorship of the Advanced Research Projects
Agency. This includes the routines for storing data on drum
and tape; for inputting and outputting; and for executing
the higher-level commends that operate on statement
structures and tape files.

Ib A project from the Natiomal Aeronautics and Space
Administration developed and programmed those parts of the
basic operating system that handle the core-held "cwrrent
data"; the interface and interpretive routines that service
the display and commnd-designation operations; and the
basic editing routines.

2 The two basic components of a command--the operator ard the
operands (or parameters).

2a The operator--specifying which commnd of the repertoire
is to be executed.

2al Generally designated by several mmemonic alphabetic
characters (with perhaps a SPACE stroke) struck by the
user on the keyboard, Case of alphabetics is unimportant.

2a2 Or, a special one-handed keyboard may be used,
leaving the other hand free for light-pen or cursor use,
This has specially arranged keys for designating forward
or backward scan, and for delete, insert, replace, move,
and copy operations on text, character, word, line, and
statement entities.

2a3 Full nams for operator appears on top line of
display immedintely after the operation is thus
designated,

2a4 After commnd execution, operation name remains
displayed; successive executions do not require
re-designating the operation.

2a5 Generally, input characters will be interpreted as
command-operation designation only after: a command has
Just been executed (by striking the CA key), a command
has just been aborted (by striking the CD key), or the
system has Just been started up.

A-19

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART B -~ OPERATING PROCEDURES

2b The operands and parameters--three <types:

2ol A numerical parameter, e.g., for designating how
many lines to scan or which type-file item to access.
Entered at appropriate time (see below) from the
alphanumeric keyboard.

2b2 Operamd entities displayed on the screen,

2b2a Selected by locating the light pen or cursor
near a character or printing space and hitting the
associated SELECT button.

2b2b User actually selects a character (which can be
a non-print character); if a larger entity (i.e.,
word, line, or statement) is called for as an operand,
the computer takes that entity which includes the
selected character.

2b3 Literal input, a string of characters entered at the
appropriate time on the alphanumeric keyboard.

2b3a Always terminate LIT with a CA.

2b3 At the time during a command designation that
LIT is expected by the computer, a space is cleared on
the display and the user sees the
character-by-character accrual of his keyboard
input--to be put in the specified text location by the
final CA action.

2b35¢c During LIT input, a BACKSPACE deletes the last
character of the LIT string.

2b3d Similarly, a BACKSPACEWORD (a special key)
deletes the last word.

2b3e The user need not be concerned with new-line
designation; if a word 1s being entered and the emd of
the line 1is reached before a SPACE is entered, the
computer automtically shifts the partial word to the
start of the next line.

3 Executing or aborting a command,
3a. After designating appropriately the operation,
parameters,and operands, striking the CA key (there is one

on each side of the keyboard) will cause the command to be
executed,

A=-20

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART B -- OPERATING PROCEDURES

3al On the commands not involving a literal input, a
SPACE key (generally easier to strike) may be used
optionally in place of the CA key.

3a2 A bug-select actuator on a cursor has exactly the
same effect as the CA key, and may be used in its stead
at any time,

3b At any point in designating a commnd, striking the CD
(command-delete) key will abort the command.

3bl The operator designation in the top line of the
display will remain as it was before hitting the CD key.

4 Many commands change the contents of statement; the new
formatting 1s automatically done by the computer.

4a In general all the text of a statement is cut into new
line assignments. A given line is terminated (by a new-line
start) at the inter-word gap which comes nearest to filling
out a stipulated length of the line,

4 The exception: 1if a line contains a TAB in it, then 1its
line-start text position remins fixed.

4c On type-out or punch-out, leading SPACE and TAB codes
are inserted to imdent each line of a statement 3d speces,
where "d" 1s an integer one less than the structural depth
of that statement.

S Commend-description conventions.,

Sa A description of the way a given command is designated
is presented below as a succession of (upper-case) character
groups, each separated by a SPACE.

5b The single letters each represent the correspomding
single alphabetic character to be entered. (Case is
unimportant in actual usage.)

Se¢ SP represents a SPACE character.

54 C1,C2,..., Wl ,W2,u0ey L1;12,...5 S1,88,..9; reqresent
user-designated characters, words, lines, or
statements~~each specified at commni-designation time by
selection of any single character within the entity.

Se LIT represents a literal-input string and includes all
characters entered, even SPACE, TAB, and CARRETURN.

A-21

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART B -- OPERATING PROCEDURES

Sf NUMBER represents any decimml integer entered on the
alphanumeric keyboard.

Sg CA represents hitting the CA (command-accept) key.

6 Commands currently available:
6a Summary list:
6al Enter text from designated source into working space
on drum,
EPCA Enter from paper tape
E M CA Enter from currently positioned file on
mag tape
E K CALIT CA Enter from keyboard--automatically
positions display at emd of drum's
working text, and adds keyboerd entry
(LIT) character by character to the end
6ala This new data is added to the end of the
existing working data on the drum,
6aldb The "enter" process will halt when drum is near
full, and the typewriter will print appropriate
notice, This allows for some free space for copying
and inserting., Reinitiating the "enter" command will
load wntil working space is full,
6alc When entering from a mag-tape file, the tape
will remin positioned where the "enter" process
stopped, and unless disturbed by an intervening
tape-file command, a subsequent E M command will
continue reading in that file from that point.
6a2 Position display frame on working text of drum,
H N CA LIT CA Hop to put statement named LIT at top
of screen
H P CA LIT CA Hop to put statement nunbered LIT at
top of screen
HLW1CA Wl a link wvord, i.e., of form
TT..T(LL..L); hop to put statement
named LL..L at top of screen.
FS8Sl1cA Move forward so as to position
statement S1 at top of screen
F S NUMBER SP Move forward NUMBER statements
FLLYLCA Move forward so as to position line L1

A-22

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART B -- OPERATING PROCEDURES

(oo s e |

voouoyoy

HHH

at top of screen

L NUMBER SP Move forward NUMBER lines

A CA Move forwerd all the way to emd of text

S S1CA Move backward so as to position
statement S1 at bottom of screen.

S NUMBER SP Move backward NUMBER statements

LL1CA Move backward so as to position line L1
three lines from bottom of screen

L NUMBER SP Move backward NUMBER lines

A CA Move backward all the way to the
beginning of text

B S1 CA Move forward to next logical break in

nunbering sequence starting from
indicated statement

B S1 CA Move backward to next logical break in
statement- numbering sequence starting
from indicated statement

6al2a See 6ada for definition of "logical breek."
6a3 Modify text seen in display frame.

6aZa Delete the designated entity, and close up the
reme.ining text,

T Cl1 C2 CA Delete text, characters Cl through C2
ccCclca Delete character Cl
W W1 CA Delete word W1
LL1CA Delete line L1
S S1CA Delete statement S1
623 Insert LIT as indicated behind the designated
entity. Rearrange prior text as required to make room,
T C1 LIT CA Insert LIT after character Cl
C C1 LIT CA Insert LIT after character Cl
W Wl LIT CA Insert SPACE LIT after last printing
character of word Wl
L L1 LIT CA Insert CARRETURN LIT after last
printing character of line L1
S S1LITCA Insert CARRETURN CARRETURN LIT after
last printing character of statement
S1

6a3¢c Replace the designated entity with LIT,
rearranging prior text as necessary.

T C1 C2 LIT CA Replace text string characters Cl
through C2, with LIT
C C1 LIT CA Replace character Cl with LIT

A-23

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART B -~ OPERATING PROCEDURES

R W W1 LIT CA Replace word W1 with LIT
R L L1 LIT CA Replace line L1 with LIT
RS S1 LIT CA Replace statement S1 with LIT

6a3d Move one designated entity to follow another.
The moved entity is deleted from its original
location, Other text is adjusted to close the
deletion gap and open the correspording insertion gap.

MTClLC2 C3CA Move the text string, character C2
through C3 to follow character Cl

M C ClC2 C3 CA Move the text string, character C2
through C3, to follow character Cl

MW Wl w2 CA Move word W2 to follow word Wl

ML Ll1L2 CA Move line L2 to follow Ll

M S S1 S2 CA Move statement S2 to follow statement
Sl

6a3e Copy one designated entity and insert it behind
another. The copied entity remins unchanged. Prior
text is rearranged to make room for new insertion.

CTClcC2 C3CA Copy text string, characters C2 through
C3, to follow character Cl
CCClczC3CA Copy text string, characters C2 through

C3, to follow character Cl

C WWlwe CA Copy word W2 to follow word W1
CLL1IL2 CA Copy line L2 to follow line L1
CS Sl s2 CA Cory statement S2 to follow statement
S1
6a4 Renunber successive statements in the working text.
N S1 LIT CA Give statement S1 the new number LIT,

and give successive statements
correspord ingly appropriate new
numbers until a statement STZ is
reached such that either STZ is of a
higher level than S1, or STZ 1is not

a "logical successor” to the statement
preceding it. Display view ends up
with the predecessor of ST2 at the top
of the frame,

6a4a ST2 1is said to be the logical successor to ST3
if there could exist an acturl hierarchical structure
such that (by their location numbers) ST2 could
succeed ST3 in the text., For instance, following 2b3
one could logically accept only 2b3e, 2b4, 2c or 3.

A-24

SECTION III -~ ON-LINE TEXT MANIPULATION SYSTEM
PART B -- OPERATING PROCEDURES

nunm
st
==

Presence of any other number on the next statement
establishes a "logical break"” at this point in the
text.

6aS5 Move or copy statements selected from the display
and insert them just before a specified statement
somevhere else in the drum-held working text. These
operations require a three-character designation.

S1 LIT CA Transmit (move) S1 to the statement
named LIT

S1 LIT CA Transmit S1 to the place (statement
nunbered) LIT

S1 S2 LIT CA Transmit the list of statements Sl
through S2 to the statement named LIT

S1 S2 LIT CA Transmit the list of statements Sl

through S2 to the place (statement
numbered) LIT

S1 LIT CA Copy S1 to statement named LIT
S1 LIT CA Cowy S1 to place nunbered LIT
S1 s2 LIT CA Copy 1ist, S1 to S2, to statement named

LIT S L P S1S2 LIT CA Copy 1list, Sl
to S2, to place numbered LIT

6a6 Output part or all of the working text to the
designated device. The working text remains umdisturbed.
Three characters are required for operation designation,

CA Output to punch all working text

CA Output to typewriter all working text
(not yet implemented)
CA Output to currently positioned mag-tape

file all working text, replacing prior
contents of that file

Sl S2 CA Output to punch statements S1 through
S2 (S1 may equal S2 for one-statement
output)

S1 s2 CA Output to typewriter, statement

Cl c2 CA Output to punch partial, characters Cl
through C2

Cl C2 CA Output to typewriter partial,

characters Cl through C2

6a7 Clear the working space on the drum of its present
contents,

Zero work smace

6a8 Locate and examine tape-file items., Each

A-25

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART B -- OPERATING PROCEDURES

fixed-length item space can hold a full drum load of
working text, and the items are referenced by
decimal-integer serial number correspording to their

order on the tape.

Any "look" operation displays the

first fremeful of text from the tape without either
disturbing the drum data or losing the position on tape.

LHCA

L I NUMBER CA

L N CA

LPCA

Look here, 1,e., at text Just beyomd
current position on tape

Look at item numbered NUMBER--positions
tape at head of the item and provides a
look

Look at next item--the one Just beyord
the current position

Look at prior item--the one Jjust shead
of the current position

6a8a Trying to look beyond the last item, either with
L I NUMBER for too large a NUMBER, or with a L N from
the very last item of the file, will produce the
displayed message, "Beyond last item,”

6a8b An O M command at this point will create a new
item on the end of the file

6a9 Type out system-status data,

O S CA

Output system status, causes typing in
the form: x channels left, itemy last
read in, tape positioned to item z.
"Channels" refer to the Sl2-character
modules of drum working space, of which
there are a total of 36.

A=-26

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART C -- ON-LINE COMPUTER EQUIPMENT

1 This section contains brief descriptions of the computer ard
associated peripherel equipment currently used by our on-line
text menipulation system.

2 THE COMPUTER (CDC 160A)
2a Memory:
2al 6.5 usec cycle time,
2a2 12-bit word.
2ad3 4,096 words per bank, directly asddressable,

2a4 Two banks on our machine--programmer must set up
bank controls to shunt his access requests, indeperdently
for four categories of access, to the appropriate bank.

2a5 Each bank has independent access circuitry.
Z2b Instruction repertoire:
2bl No built-in multiply, divide, square root, etec.

2bZ Full complement of add, subtract, comditional
branch, transfer, logic (logical product, selective
complement), shifting, input-output, end selective stop
and Jump (responding to switches on console).

2b3 Since 12 bits can Just exactly address 4096 words,
all instructions requiring operand specification over a
complete bank require two successive words--one for
operation specification and one for operard
specification.

2b4 A significant proportion of instructions require but
one word, and operate with 6 bits of operand
specification in one of the following modes:

Zb4a Relative forward--addressing one of the 64 words
following the cell in which the single-word
instruction was located.

2b4db Relative backward--addressing one of the 64
vwords preceding the cell in which the single-word
instruction was located,

2b4c Direct--addressing one of the first 64 words in

A=-27

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART C -- ON-LINE COMPUTER EQUIPMENT

a bank specified by the direct-bank bank-control
setting.

2b4d Indirect--telling the computer (with a one-word
instruction) to go to the specified one of 64
direct-bank words, take the 12-bit contents as the
full-bank eddress of the operarnd, and look for the
operand in the bank specified by the indirect-bank
bank control,

Zb4e No address--a 6-bit operand is to be found in
the lower six bits of the instruction word.

2bS Variations in the operation code of nearly all the
commnds indicate which way the operamd is to be obtained
for that instruction. For example, the add instruction
will have the following variations:

2b5a Add no eddress (adn), add the lower six bits of
the instruction word to the accumulator,

2b50 Add direct (add), add to the accumulator the
contents of the direct-bank cell specified by the
lower six bits of the instruction word,

2bS5¢ Add memory (adm), add to the contents of the
accumilator the contents of the memory-bank cell
specified by the 12 bits of the word following the
instruction word (then get the next instruction from
the word following that one). Which bank to use for
operard accessing is specified by the setting of the
memory-bank control.

2b5d Add imdirect (adi), add to the contents of the
accumilator the contents of cell in indirect bank that
is specified by the contents of the cell in direct
bank whose address is the lower six bits of the
instruction word.

2bSe Add constant (adc), add to the contents of the
accumulator the contents of the cell following the
instruction--and get the next instruction from the
cell following that,

2b5f Add forward (adf), add to the contents of the
accumlator the contents of the cell that is forward
of the instruction cell by the six-bit nunber fourd in
the lower half of the instruction word.

2o5g Add backward (adb), add to the contents of the

A-28

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART C -- ON-LINE COMPUTER EQUIPMENT

accumulator the contents of the cell that is backward
from the instruction cell by the six-bit number fourd
in the lower half of the instruction word.

2¢ Interrupt feature:

2cl Four independent sources, two internal and two
external, may cause an interrupt of what the computer is
currently doing.

2c2 Interrupt signal causes contents of accumlator to
be put into special cell, and the computer to get its
next instruction from the succeeding cell.

2c5 The special cells, for the four sources, are cells
10, 20, 30, and 40--hence the sources are generally
called the interrupt-10, interrupt-20, interrupc-30, and
interrupt-40 sources.

2c4 Programmer can lock out these interrupt inputs
programmatically,

2eS5 If interrupts are not locked out, interruption
occurs at completion of current instruction.

2d Input-output provision:

2d1 Two input-output channels that can operate
independently--termed "normal" and "buffer."

2d2 Normel works as one expectse-give a commard to input
or output and the computer waits until the job is done
before it goes on to do further work.,

243 Buffer works independently of the normal instruction
cycles. Give an instruction for a buffer in or out and
the main sequence of operations will continue while this
input or output is being carried out. Every time the
buffer channel needs access to the memory it steals a
cycle from the main program sequence without otherwise
bothering it. At the end of the buffer operation, an
interrupt-20 automaticelly occurs--aml the programmer has
had to be ready with the appropriate instructions
starting at cell 21 to take care of this.

2d4 After a device has been selected, all subsequent
input (or output, if selection was for output)
instructions operate with that device.

2d5 There is a family of single-word transfer commands

A-29

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART C -- ON-LINE COMPUTER EQUIPMENT

that serd or receive one word per instruction.

2d6 There is family of block-transfer commands that will
send or receive an arbitrary-length block to or from
consecutive cells of memory, at the rate determined by
the external device,

S PERIFHERAL EQUIPMENT:

3a For any device, transfer to and from the computer (on
either channel) can be accomplished by single-word-at-a-time
commards, or by block-transfer commards,

3b Paper tape reader., Photo-electric. Can read at
asynchronous rate up to meximum of 320 frames/sec. Will
accept 6=, 7-, or 8-level tape, Always on normal channel,

3¢ Paper-tape punch. A Teletype product, punching 8-level
oiled tape. Can punch asynchronously up to maximum of about
120 frames/sec. Always on normal channel,

3d On-line typewriter. IBM typewriter, with CDC interface.
Can couple to either channel,

3e Character generator.

3el Several modes of operation, in which it interprets
differently the words sent from the computer,

3e2 The mode is determined by the program code used to
select the character generator for coupling to the output
channel,

3e3 The mode we use for text interprets the words
following the select instruction as follows:

3e3a The first word specifies vertical position (nine
bits) and the least-significant three bits of
horizontal position.

3e3b All succeeding words (until another select
instruction) specify a character to be displayed (with
6 bits) at the vertical location already designated,
ard the most-significant six bits of the horizontal
position.

3e3¢ This allows a whole line of characters to be
outputted as a block following a select instruction
which specifies the vertical position of the line.

A-30

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM
PART C -- ON-LINE COMPUTER EQUIPMENT

3e4 There 1s a repertoire of 43 characters to select
from.

3eS Characters are generated in an asynchronous
operation that takes a maxirum of 6 microseconds--but the
output channel cannot deliver words to the output in less
than about 17 microsecond intervals--so we have a meximum
generation rate limited by this factor of a little less
than 60,000 characters per secord.

3e6 We display about 1,000 characters maximum on our
screen, and run it at a rep rate of 60 frames/sec.

3e7 The new character generator being installed soon
will interpret output words as specifying two characters
per word, and will double our displayable capacity.

3f Mag tape. A CDC Type 603, compatible with IBM and
Burroughs BS500. Programmer can write records of arbitrary
length--transport autometically leaves Inter-record gaps
after stop sending it data. Has end-of-file code that can
be put on programatically. Will read forward one record at
a time, or back up one record at a time, from a single
instruction.

3g Drum--a 32,000-word, fixed-head auxiliary storage
device,

3gl Speed, about 30 rev/sec.

3g2 Can only make access to records--two records per
track, 32 tracks.

3g3 Each record holds 512 12-bit words.

3h Special interface and assoclated devices used by the
on=line console.

3hl Light pen, manufactured by Sanders Associates of
Nashua, New Hampshire,

Zhla A photonmultiplier tube in the control unit
recelves light by means of a fiber-optic bundle from a
hand-held pen containing a lens which focuses light on
the bundle,

3hlb A circle of orange light is projected from the

pen to aid in aiming. The source for this light is in
the control unit, amd light is again transmitted by a

A-31

SECTION 111 -- ON-LINE TEXT MANIPULATION SYSTEM
PART C -- (N-LINE COMPUTER EQUIPMENT

fiber bundle,

3hle When a light pulse of suitably fast rise time is
detected an electrical pulse is generated in the
control unit. A switch on the body of the pen unit
gptes this pulse to the interface logic.

3hld In the single-pulse mode of operation, only one
pulse 1s produced each time the pen button is
depressed and the finder beam goes out to inlicate a
successful detection.

3hle In the continuous mode of operation, a pulse is
sent to the interface each time a light pulse is
detected, as long as the pen button i1s held down,

3hlf The pulse mode is set by means of a switch on
the control box (to which the 34-inch fiber-optic
bundle attaches),

3hlg When the interface receives a pulse from the light pen
control unit, an interrupt is sent to the computer and

the six most-significant bits of the last computer

output word are stored, (These six bits represent the
horizontel position of the character on the display

which produced the light pulse.)

3h2 An analog-to-digital converter, manufactured by
Dynamic System Electronics, allows the digitizing,
selecting, and inputting to the computer of four
different analog input channels., The converter produces
nine bits plus sign, with a settling time of 400
microseconds. The converter is used to input positional
information from the following operand locating devices:

3h2a A Joystick, manufactured by Bowmar Associates,
has two potantiometers coupled to a vertical stick.
The potentiometers are used as voltage dividers, amd
produce voltages proportionel to the X amd Y
deflection of the stick from its central location. A
switch, actuated by pressing down on the stick, my be
used as an input to the computer--to mark operand
locations, for example,

3hZb The Grafacon, manufactured by Data Equipment
Corporation, consists of a linear potentiometer
mounted in a frame which is pivoted on an angular
potentiometer. The voltage outputs from the two
potentiometers represent polar coordinates sbout the
pivot point. A ball or a pen, mounted on the emd of

A-32

SECTION III -- ON-LINE TEXT MANIPULATION SYSTEM

PART C -- ON-LINE COMPUTER EQUIPMENT

the linear potentiometer shaft, is moved about by the
operator ard 1s depressed to actuate a switch which
may be used as a computer input.

3h2ze The mouse, made by SRI, consists of two
potentiometers mounted in a frame with their shafts
orthogonal and a wheel on each shaft. As the frame is
moved about a surface the potentiometers resolve the
motion into two coordinates, A switch mounted on the
frame may be used as a computer input.

3h2d A footpedal, mede by SRI, consists of a
potentiometer coupled to a pedal which is pivoted at
its center. Rocking the foot forward and backward
operates the potentiometer; a switch operated by the
other foot chooses horizontal or vertical input for
the ocutput of this potentiometer.

3h3 The interface provides for input to the computer of
external contact closures, The switch circults are
arranged in three groups; a group of 15 are encoded to 4
computer input lines, a group of 7 are encoded to 3 input
lines, and a group of S are input directly to S input
lines. Actual input lines are selected by means of a
patch-panel to provide flexible assignment of bits in the
input word.

3h4 A bell mounted in the on-line console may be rung by
a select code from the computer,

3hS An interrupt for timing purposes mry be sent to the
computer at a selected rate, A multivibrator in the
interface covers an interrupt rate range of appraximtely
30 to 150 cycles. An externzl input will accept a rate
up to about S000 cycles.

3h6 All interrupts from the interface may be locked out

by a select code from the computer, and enabled by
another select code,

A-33

SECTION 1V -- OFF-LINE TEXT MANIPULATION SYSTEM
PART A -- INTRODUCTION

1 Implementation of the Off-Line System has been funded in
rart as an in-house project and in part by the Air Force Office
of Scientific Research.

la Development of statement-manipulation techniques and
programuing on the B5500 were supported by Stanford Research
Institute as an Institute Sponsored Research proJject.
Included in this effort was the 160A programming required to
translate between tapewriter codes amd Burroughs code,

b Z-Code editing features incorporated into this system
were developed and programmed on the 160A urder the
sponsorship of the Air Force Office of Scientific Research,

2 The Off-Line System was implemented to make available
machine-aided text editing and updating on a fast-turn-arourd
basis to a larger community than can be served by the current
On-Line System,

3 The Off-Line System makes use of the combined facilities of
the CDC 160A computer in the Systems Engineering lLaboratory amd
the Burroughs BS5500 computer operated by the Mathematical
Sciences Demartment.

Za Since paper tape provides a convenient medium for
entering text, end since the BSS500 is not equipped for
paper-tape input, the 160A is used to translate paper tape
input in Flexowriter or Teletype code to Burroughs code on a
mgnetic tape.

3 The larger core and drum memories of the BSS00 are
utilized for rapld access to statements anywhere within a
fairly long document to combine text from separate input
tapes and/or to restructure the contents of a given document
according to commards specified in one or more of the input
tapes., Statements are inserted, moved, or replaced
essentially by successive modifications of
statemeant-to-statement links defining a path through the
document, Separate documents may be spliced end-to-emd or
merged such that their statements are intermingled.
Additional text mey be appended to existing statements by
means of similar links, The BSS500 produces an output
mgnetic tepe in which the document is restructured as
specified, with its statements renurbered according to a
standard formmt.

A-35

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART A -- INTRODUCTION

3c The 160A converts Burroughs code on the output magnetic
tape to Flexowriter code amd executes Z-Code editing
commands enbedded in statements or appended to them during
the statement-manipulation process on the BS500. The 160A
produces & paper tape that may be listed on the Flexowriter
to produce hard copy or entered as input to the On-Line
System. The output tape may, of course, also be used as
input to a later pass through the Off-Line System for
updating or further editing or restructuring.

4 The ability to append Z-Code editing commands (which can
reach any point within a statement) during the restructuring
process permitted separation of the gross restructuring process
from the detailed editing process. Since the latter had been
previously programmed on the 160A, this organization minimized
the programming effort required to implement the system.

S Any number of peper tapes mey be merged to produce a single
document.

6 Any number of documents may be processed in a single batch,
up to the capecity of a single magnetic tape (with high-density
recording).

7 Statement-manipulating procedures and Z-Code editing
functions have been so designed that everything sbout the
eventual output from the Off-Line process can be unanbiguously
determined by examining the tapewriter input.

7a. Thils principle assures the user that he can edit or
otherwise manipulate text material according to the way it
appears on the hard-copy listing without risk of error due
to non-printing keyboard actions or phantom characters that
would throw line, word, or character counts off.

7o Adherence to this principle has made it possible to take
"0ld" documents produced with early versions of the
text-editing processes and rework them using later
techniques without being trapped by some forgotten (hidden)
feature of their machine coding.

A-36

SECTION IV -~ OFF-LINE TEXT MANIPULATION SYSTEM
PART Bl -- STATEMENT-STRUCTURE MODIFICATION:
PROCEDURES FOR ENTERING MATERIAL

1l Implementation of the Off-Line System has been funded in
rert as an in-house proJject and in vart by the Air Force Office
of Scientific Research.

la Development of statement-manipulation techniques and
programming on the BS500 were supported by Stanford Research
Institute as an Institute Sponsored Research project.
Included in this effort was the 160A programming required to
translate between tavewriter codes anmd Burroughs code.

b Z-Code editing features incorporated into this system
were developed and programmed on the 160A under the
sponsorship of the Air Force Office of Scientific Research.

2 Input is via paper tape prepared on Flexowriter or Teletype
me.chines.

2a. "Notes for Orientation of Personnel Preparing Copy for
the Off-Line System" is a useful reference for the
first-time user.

2b "User Guide to Statement Manipulation in the Off-Line
System" 1is a concise reference for the experienced user.

2c "Z-Code Reference Sumery" is a reference document
describing editing operations within statements,

24 "Capitalization and Underlining on the Model 33ASR
Teletypewriter" is a guide to the use of this machine for
the preparation of input material.

3 All tapes should carry the source data in man-readable form,
i.e., initials of originator and date in white pencil or gummed
label on the tape leader,

Ja Tapes to be merged should carry identical source data,
i.e., the source data of the original memo.

Sb Tapes for different jobs carrying the same initials and
date must be identified by serial nunbers following the
date, i.e., ART 15 FEB 65-1 and ART 15 FEB 65-2.

4 All tapes should be labelled as to the machine code: FIX if
prepared on Flexowriter, TTY if prepared on Teletype machine,
FL if output from a previous pass through the off-line (FL)
system, and NL if output from the on-line system,

A-37

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART Bl -- STATEMENT-STRUCTURE MODIFICATION:
PROCEDURES FOR ENTERING MATERIAL

4a Output from the off-line and on-line systems will
normelly be in FLX code.

S A single original tape or the primary tape to which others
are to be merged need not carry additiomnal informetion.

6 Two types of merge operation are available, In labelling
tapes for processing, "merge,” in the narrow sense, will be
used to refer to tapes carrying data to be interleaved with a
primary tape. "Follow" will refer to tapes carrying statement
lists to be tacked onto the ernd of a primary tape. The latter
mode permits separate memos repeating some of the same
statement numbers to be spliced in sequence to form a longer
memo.,

6a Tapes to be merged with a primary tape should carry the
vord "merge" and a nunber indicating the order of merging;
thus "merge #1" would be merged with the primary tape before
the tape labelled "merge #2."

6b Tapes to follow a primary tape should carry the word
"follow" and a number (which must be a multiple of 10) to be
prefixed to each statement nurber of the following memo.
This number must be larger than the highest
principal-statement or head ing nunber of the memo it
follows, and it must be distinct from the prefix used for
any other "follow" tape to be combined with the same memo.
Operation of the prefix is that of placing 10. in front of
each statement nunber in the following memo, if 10 is the
prefix designated.

7 A brief form on a 3-by-5 card, available at the collection
point, must be filled out for each job. This form is
self-explanatory.

8 The tapes for each Jjob should be stacked on top of the
3-by-5 card at the collection point.

9 Normel hard-copy outputs are (1) a BSS00 listing, with the
Z-Code commands not yet executed, and (2) a Flexowriter listing
of the output paper tape, produced after Z-Code execution.

The paper tape in FIX code is the machine-readable output.

9a At times, the Flexowriter may be a bottleneck in the
system. At such times, faster turn-aroud may be achieved
by working with the BSS500 listing and not waiting for the
Flexowriter listing. Care must be exercised, however, since
the Z-Code processing will result in reformatting within
statements, so that format on the BSS500 listing may not be
the same as that on the paper tape.

A-38

SECTION 1V -- OFF-LINE TEXT MANIPULATION SYSTEM
PART Bl -- STATEMENT~STRUCTURE MODIFICATION:
PROCEDURES FOR ENTERING MATERIAL

9% If Z-Code commands are used only to modify immediately
ad Jacent text, i.e., text within the entered statement in
which they occur, Z-Code processing can be performed prior
to BS500 processing, and the BS500 listing will be "clean."
This will not work, of course, for Z-Code commands in APPEND
statements that reach into text entered in a previous
statement or on another tape.

10 Until the formt of the 3-by-5 cards 1is modified to include

a specific place for this information, please write on the card
either "Z-Code FIRST" or "Z-Code LAST,"

A-39

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B2 -- STATEMENT-STRUCTURE MODIFICATION:
PREPARING COPY

1 Implementation of the Off-Line System has been funded in
rart a8 an in-house project amd in part by the Air Force Office
of Scientific Research.

la Development of statement-manipulation techniques amd
programming on the BSS00 were supported by Stanford Research
Institute as an Institute Sponsored Research project.
Incluied in this effort was the 160A programming required to
translate between tapewriter codes and Burroughs code.

b Z-Code editing features incorporated into this system
were developed and programmed on the 160A urder the
sponsorship of the Air Force Office of Scientific Research.

2 A STATEMENT is a segment of text headed by a statement
number preceded by two carriage returns (or, on the Teletype,
two line feeds).

2a All elements of the text, including the Source, Title,
Abstract, etc., must be in statement format; that is, they
must be preceded by two carriage returns (or two line feeds)
and appropriate statement numbers,

2b The first characters entered on any tape must be
preceded by two carriage returns (or line feeds).

3 A STATEMENT NUMBER is an alternating sequence of nunbers
(one or more digits) and letters (doubled, tripled, etc. if
necessary).

3a The first symbol of a statement nunber must be a
numerical digit.

3> Literal elements of statement nunbers, a, b, c, etc.,
must be lower case, Slashes (/) amd plus signs (+$ within
or preceding a statement number will invalidate the nunber.

3¢ Statements headed by numbers alone designate the highest
level in the text structure, either the ma jor headings or
the principal lead statements,

3d Statement nunbers of the form 2a, 2b, 2c, etc. designate
elements of a statement list, or substructure, subordinate
to the head statement designated by the nurber 2 alone,

31 If the nunber of items in a statement list carrying

a letter as its last character exceeds 26, letters are
doubled up according to the following convention: 2x,

A-40

SECTIN IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B2 -~ STATEMENT-STRUCTURE MODIFICATION:
PREPARING COPY

2y, 2z, 2aa, 2ab, 2ac, . . . 2az, cba, etc.

3e Statement nunbers of the form 2bl, 2b2, 2b3, etc,
designate elements of a statement 1list, or substructure,
subordinate to the head statement designated by the
statement nunber Zb,

3el Numerical sequences mey be as long as required:
2b8, 2bs, 2bl0, 2bll, . . . 2b99, 2b100, etec.

3f Regardless of their order in the input text, the BSS00
will ocutput statements in the order determined by their
statement numbers,

3f1l In the reordering of statements according to
statement nunber, the substructure under each statement
will be outputted directly following that statement, end
this rule will govern down to the lowest level of the
structure, as in this document.

Statements may be interpolated into an existing list by
utilizing the following conventions:

4a A statement to be inserted between major headings 2 and
3 and of equal rank with them may be assigned the statement
number 2.5 (the 5 could be any digit or decimal number),

The B5SS00 will renunber this inserted statement 3, change
the former 3 to 4, etec., all the way to the end of the list,
Furthermore, it will make the same changes to the first
numbers of all subordinate statements, so that each heading
statement will retain its own substructure,

4al If several statements are to be interpolated between
two existing statements, they may be numbered 2.3, 2.4,
2.5, 2.52, 2.6, etc., amd they will be inserted in order
of their decimml values; that is, 2.52 would come after
2.5 and before 2.6 in the B5500 output, regardless of
their order in the input text.

4a2 If an inserted statement should carry a substructure
of subordinate statements, they may be designated as
follows: 2.52a, 2.52b, 2.52c, etc, When the 2.52 is
changed to a whole integer in renumbering, the
subordinate statement numbers will be altered to agree,
so that the suwbstructure will follow the referenced
statement,

4b A statement to be inserted between 2b arnd 2¢ and of

equal rank with them may be assigned statement number 2Zb.m
(the m could be any letter of the alphabet or string of

A-41

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B2 -- STATEMENT-STRUCTURE MODIFICATION:
PREPARING COPY

letters.). The BSS00 will renumber this inserted statement
2c, change the former 2c¢ to 24, etc., all the way to the end
of the substructure list under heading 2. Furthermore, it
will make the same changes to the correspording letters in
the numbers of all subordinate statements involved, so that
each statement will retain its own substructure.

4bl 1If several statements are to be interpolated between
two existing statements with final literals in their
statement numbers, they may be designated as follows:
2b.a, 2b.c, 2b.m, 2b,ob, 2b,n, etec,, amd they will be
inserted in alphabetical order, treating second letters
as interpolations between first-letter designations; that
is, 2b.mb would come after 2b.m and before 2b.n in the
BS500 output, regardless of their order in the input
text. (This amounts to a decimal interpretation of the
literel string, consistent with the interpretation of the
numerical string.)

4b2 If an inserted statement that will carry a fimal
literal in its statement number should carry a
substructure of suwbordinate statements, they may be
designated as follows: ¢2Zb,mbl, 2b.mb2, 2b.mb3, ete.
When the 2b,mb is changed to a nunber followed by a
simple literal in renurbering, the subordinate statement
nunbers will be altered to agree, so that the
substructure will follow the referenced statement.

4c The conventions described above may be utilized at all
levels of the text structure., If the level in which
interpolation is to take place is designated by statement
nurbers with final numerical symbols, the Interpolation
string is numerical. If the level in which interpolation is
to take place is designated by statement nunbers with final
alphabetical symbols, the interpolation string is
alphabetical.,

49 In cases vhere it becomes necessary to insert a
statement before the first item of a 1list or suwblist, the
following convention is useful: 1,5 will be renumbered 1,
with all subsequent numbers increased, so that the list is
pushed down. 2a,m will be renunbered 2a, with all
subsequent secord literals in the list advanced one letter,
thus pushing down this sublist. All other conventions
discussed in 3a thru 3¢ hold when the period (.) is replaced
by the comm (,). Interpolation now takes place before the
statement wvhose nunrber precedes the comma, rather than after
the statement whose number precedes the period. The
relative order of multiple insertions is governed by the
same decimnl interpretation as when the period is used;
i.e,, the comm does not reverse the sense of the

A-42

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B2 -- STATEMENT-STRUCTURE MODIFICATION:
PREPARING COPY

interpolation, it merely designates interpolation into the
preceding rather than the following interval.

4e If two statements should be inedvertently entered with
the same number, the statement entered last will follow the
first, amd they will be renunbered consecutively,

S DELETE, REPLACE, MOVE, and APPEND Operations are achieved by
utilizing statements with coded instructions tacked onto their
statement nubers,

Sa Command codes are literal elements, 4, dt, 41, r, m, and
a, following a colon (:). These literal elements must be
lovwer case., Slashes (/) amd plus signs (+) within the
commml structure will invalidate the command.

Sb Each of the following commands must be entered as a
separate statement; that is, the coded statement nunber mst
follow a double carrisge return (or double line feed).

5¢ The coded statement nunber 2bl:d will delete statement
2bl wherever it exists, either in the original copy or in
the correction coypy.

Scl Deletion of a statement automatically deletes all of
the substructure urder that statement; thus the command
Zbl:d will delete not only statement 2bl but all
statements with 2bl followed by any combination of
letters amd numbers, It will remove Zbla, 2blal, 2blb,
etc.

Sc2 VWhen a statement, with i1ts substructure, is deleted,
the BSS500 will renumber the remaining elements of the
1list and the substructure statements under them, so that
there will be no discontinuity in the number
designations,

5¢3 The delete code may be used to delete a statement
that is itself a delete commmand, For instance, if the
delete command Zbl:d has been entered anywhere in text as
a statement, the statement 2bl:d:d will remove the delete
command, ard the original statement 2bl will stard.

51 The coded statement nunber 2bl;la:dt will delete
statement 2bl amd any and all statements following it in the
input text up to aml including statement la., (In this
example, it is assumed that text is beifig entered out of
order and that there is a statement 2bl, followed later on
by a statement la, with any nunber of intervening
statements,) This :dt code is used to remove statements from

A-43

SECTION IV -~ OFF-LINE TEXT MANIPULATION SYSTEM
PART B2 -~ STATEMENT-STRUCTURE MODIFICATION:
PREPARING COPY

the text material on the tape currently being prepared on
the tapewriter, whether new material or correction copy.

The :dt code will not reach material on amy previously
processed tape with which the currently prepared text is to
be merged. Neither will it reach beyord the segment of
input text bounded by the referenced statements. A
statement nunbered 2Zbla, for instance, would be deleted
along with its heading statement 2bl only if statement 2bla
lay between 2bl and la in the input text; otherwise 1t would
rem in,

Se The coded statement number 2bl;2d:d1 (final character is
letter "1") will delete statement 2bl and any and all
statements following it in structured order, up to and
incluling statement 2d anmd all of the substructure under 24.
The statements between Zbl and 24, and the substructure of
2d, may have been entered on separate tapes, intermixed with
any other statements, etc. Wherever they exist in the
structured or unstructured text, items headed by statement
nurbers beginning with 2bl, 2b2, 2b3, . . . 2¢, amd 24 will
be deleted., Statements with numbers out of this range will
not be deleted, even though they may be intermixed in the
text.

Sel When a group of statements, with their substructure,
is deleted, the BS5500 will renumber the remaining
elements of the list amd the substructure statements
under them, so that there will be no discontinuity in the
nunber designations.

5f The coded statement number 2bl:m 2b3.5 will renunber the
statement nunbered 2Zbl with the number 2b3.5 and thus cause
it to be moved to a position in the structure between the
statements previously nunbered 2b3 amd 2Zb4. Since the
original 2bl is now removed, however, all of these nunbers
mey be changed. The single space following the code letter
"m" is required. The secornd referenced statement nunmber,
2b3.5, need not be an interpolation nunber; it could be 2b6,
2c, 3f, or any other.

5¢ The coded statement number amd following literal string
Zbl:r Now is the time for all good men . . will replace the
previous text of the statement nunbered 2bl with the text
"Now is the time for all good men . ." The replacement code
:r will not affect any other statement except the referenced
one, Replacement is complete, and cannot be partial; that
is, the whole of the statement is removed and replaced by
the literal string following the coded statement nunber,

5h The coded statement number and following literal string

A-44

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B2 =-- STATEMENT-STRUCTURE MODIFICATION:
PREPARING COPY

2bl:a Now is the time for all good men . . will append the
words "Now 1is the time for all good men . ." to the end of
statement 2bl. All of the former statement remains intact,
and the addition will be made only at the erd, A single
space following the code letter "a" is required. Any
additional spaces preceding the literal string will appear
as a spacing gap between the end of the former text and the
beginning of the addition. If one desires to leave two
spaces before an added sentence, the first letter of the
sentence should be separated from the code letter "a" by
three spaces,

Shl Since, in the current system, Z-Codé processing will
follow statement processing on the BSS500, amd since the
range of Z-Code commands will be limited to one
statement, the :a operation may be used to apperd Z-Code
commards to statements, providing for deletion and
insertion of text within selected statements. Note that
the Z-Code INSERTION command must be followed by a
spacing character, and that this spacing charscter will
be deleted when the command is executed. In order to
avoid deletion of one of the required carriage returns at
the end of the statement, one should follow the insertion
command by one or more spaces, In the event that a
carriage return is inadvertently entered immediately
following an insertion commard, follow it with at least
tvo more carriage returns.

6 Since Z-Code processing within statements will follow
statement processing on the BS5500, Z-Code commands cannot be
used to delete, modify, or insert statement numbers or coded
statement numbers constituting commands to the
statement-manipulating system, Therefore, the following
conventions have been implemented to permit modification of
statement numbers (either uncoded, or coded with command
symbols):

6a If an error is recognized while typing a statement
nunber, and only the last few synbols are in error, the
PERCENT (%) sign may be typed. Each %-sign will delete one
character backward in the statement number. Thus lb2a%b
will be corrected to read 1b2b, and 1b2a%%3e will be
corrected to read lb3a., Command symbols mey be similarly
corrected; for Instance, 1b2;1c:d1%t will be corrected to
read 1b2;lc:dt.

6b If an error is recognized while typing a statement
nunber and it would be Jjust as well to start over from

scratch, the DOLLAR ($) sign may be typed. The $-sign
deletes all that has been typed of the statement number (and

A-45

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B2 -- STATEMENT-~STRUCTURE MODIFICATION:
PREPARING COPY

command code), back to the double carrisge return that
preceded 1t. Thus lb2a$lb3a will be corrected to reed lb3a,
and 1b2;le:d1$lc2;le:dt will be corrected to read lc2;le:dt.

6c The %-sign and $-sign delete commnds must be made
within the statement nunber or commamd, amd thus depemd on
catching the error before going past it by too many symbols.
If the incorrect statement number or command has been
completed and a spacing character typed, 1t may be corrected
or deleted by a later commnd constituting a separate
statement.

6cl A MOVE command mey be used to correct a statement
nunber. For instance, if a statement has been entered
with an incorrect number, 1b3, a later statement
consisting of the move command 1b3:m le3 will have the
effect of correcting the statement nunber to read le3.

6c2 An incorrect command code or an incorrect statement
nurber in a command can best be corrected by deletion and
re-entry. Deletion 18 accomplished by repeating the
incorrect command followed by the symbols :d as a
separate statement. In such cases, the correct commmnd
will then have to be typed as another separate statement.

A-46

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B3 -- STATEMENT-STRUCTURE MODIFICATIQN:
USER GUIDE

1 Implementation of the Off-Line System has been funded in
rart as an in-house project and in part by the Air Force Office
of Scientific Research.

la Development of statement-manipulation techniques amd
prograrmming on the BS5500 were supported by Stanford Research
Institute as an Institute Sponsored Research proJject.
Included in this effort was the 160A programming required to
translate between tapewriter codes and Burroughs ccde.

Ib Z-Code editing features incorporated into this system
were developed and programmed on the 160A urder the
sponsorship of the Air Force Office of Scientific Research.

2 Processing conventions:

2a The desired operation is completely specified by the
first word of each entry statement--generally the standard
location number or some variant on this.

Zb When a statement is deleted, its substructure is

deleted.
2c When a staterent is moved, its substructure is moved

with 1it.
3 User processes:
3a Insertion:

3al If, for a given statement, its location nunber has
only alphanumerics, periods, or comas in it, amd 1is
followed normally, i.e., by a spacing gap, then that
statement is to be inserted as a new statement in the
location implied by the location number.

3ala If several statements are thus assigned the same
location nunbers, their ordering in the eventual
structure will be the order of their entry. They will
be given consecutive location numbers in the final
renunbering.

3a2 Allow use of interpolative numbering in location
numbers to designate eventuwal location of statements

A-47

SECTION 1V -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B3 -~ STATEMENT-STRUCTURE MODIFICATION:

USER GUIDE

being referenced.

3a2a Let 2a4.5 (or 4a.d) designate a location nunber
coming after 2a4 (or 4a) in eventunl interpolative
order,

3a2b Let 2al,2 (or 4a,g) designate a location number
that comes before 2al (or 4a) in eventwal
interpolation order.

3a2bl Interpret the characters after the comm as
though they were positive-ordered designators that
started from the predecessor location number (even
though there may be no predecessor statement--i.e.,
the statement referenced 1s a head statement).

3a2b2 Assume that 2al,3 (or 3a,c) would come
before 2al,5 (or 3e,e).

3a2¢c Compound interpolation is allowed: e.g., 2a4.5.2
(42.4.v) designates a location number which would be
between 2a4.5 (4a.d) and 2a4.6 (4a.e).

3a2d Multiple-character fields are not to be confused
with interpolation designation: e.g., 283.12 and
2a3.25 represent the twelfth and twenty-fifth
interpolative positions between 2a3 and 2a4--ard are
not the secomd and fifth positions between 2a3.1 and
2a3.2, or 2a3.2 and 283.3.

3 Appending to and modifying a prior statement:

3c

3bl Let a statement beginning with LN1:A designate that
the rest of this statement will be appended immediately
after the last printing charascter of STM LN1.

3bla A SPACINGAP must appear after the "“A" in the
append command.

3l The processor removes this SPACINGAP during the
append operation (before the Z-code processes are
executed).

32 Any Z-Codes included in the appended string will be
executed, treating the new composite statement as a
whole, after all of the inserting, appending, deleting,
ard moving of statements has been done,

Replacement:

A-48

SECTION IV -- OFF-LINE TEXT MANIPULATIQN SYSTEM
PART B3 -- STATEMENT-STRUCTURE MODIFICATION:
USER GUIDE

Se

3f

3cl Ilet LN1:R designate that the entire text of ST LN1
is to be replaced by the text following the R.

3¢c2 The new STM LNl will have the same location number
(LN1), with new text.

Deletion:
3d1 Let LN1:D designate that STM LNl be deleted.

3d2 Let LN1;LN2:DT designate that the input text string
including and between STM LN1 ard STM LN2 1is to be
dele ted.

3d2a This deletes all statements, of any kind and
level, in this string.

343 A delete command can operate upon a prior
delete-command statement by using as the reference
location nunber the entire compound word heading that
statement,

3X3a For example, STM 2a4b is deleted by a statement
headed 2a4b:d. But this delete command can itself be
deleted by a statement headed 2a4b:d:d.

Moving statements and structure sections:

3el Let LN2:M LNl designate that, to the structure
location specified by LN1l, the stetement STM LNZ2 and its
entire suwstructure is to be moved,

3ela The statement STM LN2, its substructure, and the
lists and substructures displaced by this move, will
all be renumbered after the deleting, inserting, and
moving operations are done,

Correcting statement-manipulation cormands:

3f1 Let $ in a location number (in the op-code part of
our statement-manipulation) designate that the $ amd all
characters up to it, are to be deleted by the B5500
processor before the command 1is interpreted.

3f2 Let % in the location number designate that both the

% and the character just preceding it are to be deleted
by the B5500 processor before the command 1s interpreted.

3f3 Before interpeting any commard statement, the

A-49

SECTION IV
PART B3 --

-- OFF-LINE TEXT MANIPULATION SYSTEM
STATEMENT-STRUCTURE MODIFICATION:
USER GUIDE

3g

3h

processor will begin at the left end of the location
nunber and proceed to the right, character by character,

looking for $ or % characters, and executing them
immed iately.

3f3a This means that n successive % characters will
delete the n preceding cheracters.

General considerations:

3gl The new numbers, appearing on the subsequent
printout, will have no interpolation nunbers,

3g2 The user may consider that the actual moving is not
done until the very last of the processing for the whole
Job. Thus, for instance, after a LN1:M LN2 commnd, he
can refer to STM 1nl or any statements of its
substructure by their location nurbers as seen in the
"original” hard copy.

3g3 It may help if the user thinks of these commands as
establishing new structural linkages (i.e., to
list-successor and sublist-head statementss between
existing statements, with renurbering to be done after
all such new linkages are established.

3g4 The compound location nunbers that effect relocation
and deletion of other statements are to be the heads of
empty statements,

3g5 It is useful to remerber that the processor mekes
two passes through the entire input text.

3gSa First pass, backwards, executing only delete
commands.

3gSh Secomd pass, forward, executing all other
commards,

Things to be careful about:

3hl Use no Z-codes in the location number (or
command)--the % and $ signs are the only acceptable ways
to make corrections in the location number,

3h2 For statements that are given the same location
nutber (not a forbidden event--they will be inserted in
order amd given new nunbers), the processor will hang up
if one tries to refer to that location nunber for a move,
delete, append, or replace.

A-50

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B3 -~ STATEMENT-STRUCTURE MODIFICATION:
USER GUIDE

3h3 Tabs appearing at the beginning of the line (i.e.,
immediately after a carriage return) will be removed.

4 Special Features:

4a Merging of two records:

4b

4al Assume that the location nunbers of the two records
are imlependent of one another and that for each record
they began with 1.

4a2 One mey designate to the operator to load the second
tape with a prefix integer, N.

4a3 Upon loeding the second tape, the operator keys this
integer in as a special parameter, and all statements in
that record will have a prefix attached to the front of
their location numbers composed of the integer N followed
by a PERIOD,

4a4 The user would then write a new third tape to
specify the manner in which the contents of the second
tape are to be integrated with those of the first tape.

4a4a When referencing statements of the second
record, the user must be careful to designate their
location nurbers with the appropriate prefix which he
specified.

Multiple sequence input entry:

4bl A user sitting at his own tape-punching typewriter
preparing material dealing with a number of independent
records, often fimds that new thoughts occur for the
modification of one record while he is typing on the
modification for another,

4b2 The feature here described allows him in such a
situwation to interrupt the sequence being composed for
the one record ard introduce, on the same paper tape
input, new statements for the sequence referring to the
other recond.

43 To use this feature, one designates an integer Jjob
nurber for each of these indeperdent input sequences
which he wishes to use. (He will communicate to the
operator which paper tape records each of these
correspords to.)

A-51

SECTION 1V -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B3 -~ STATEMENT-STRUCTURE MODIFICATION:
USER GUIDE

404 When typing his input, the user may insert at any
point a statement beginning with a # character followed
immedintely by an integer and then a SPACINGAP.

4p4a The Iinteger designates to which record the
following statements are to refer.

4b4b In this sequence-break statement, any
comment-type text may follow the SPACINGAP, and will
be ignored by the processor.

45S The operator will insert the necessary parameters
at load time so that for each of the independent input
records, the processor will scan the input tape amd
extract the statements referring to that record,

A-52

SECTION 1V -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B4 -- STATEMENT-STRUCTURE MODIFICATION:
OPERATOR INSTRUCTIONS

1l Implementation of the Off-Line System has been funded in
rart as an in-house proJject and in part by the Air Force Office
of Scientific Research.

la Development of statement-manipulation techniques and
programming on the BS5500 were supported by Stanford Research
Institute as an Institute Sponsored Research proJject.
Included in this effort was the 160A programming required to
translate between tapewriter codes and Burroughs code.

b Z-Code editing features incorporated into this system
were developed amd programmed on the 160A under the Air
Force Office of Scientific Research.

2 In the current version of the off-line system the following
steps are taken to process information:

2a. Tapes (either Teletype or Flexowriter) are first
converted to magnetic tape using the CONVERT program for the
160a.

Z2b Statement manipulation commards are then executed on the
B5500.

2¢ The MAG-TAPE ZCODE program is used to execute Z-code

commands on the statements and output a Flexowriter paper
tape, which can be listed and recycled through the system.

3 Use of the 160a for converting paper tapes to megnetic
tapes:
3a Turn on power.
35b Master clear.
3¢ Turm on paper tape reader.
3d Put a magnetic tape with a write ring on the tape unit;
put magnetic tape unit on O; and connect tape to normal
channel,
3e (LOAD) Load CONVERT program paper tape at 0000.
3f Master clear.

3g (RUN) Put data tape in reader and run,

A-53

SECTION 1V -- OFF-LINE TEXT MANIPULATION SYSTEM
PART B4 -- STATEMENT-STRUCTURE MODIFICATION:
OPERATOR INSTRUCTIONS

3h STOPS: The computer will halt at one of the following
locations:

3hl 0727: System has failed to clear magnetic tape
parity error. Do not mster clear. Reset run switch,

3h2 0254 or 0754: The data tape has been processed., Do
not master clear., Clear all jump switches. Do one of
the following:

3h2a If the next tape is to be "merged" (same Jjob),
put 0000 in A and go to(RUN),

3h2b If the next tape is to "follow" (same Job),
enter prefix in A and go to(RUN).

3h2c If the next tape is not to be merged (different
Job), put 0001 in A and go to(RUN),

Sh2d If there are no more tapes to be processed, put
0002 in A and run.

3hd 0153: Tape did not start with a carriage return.

If the paper tape is a Teletype tape, reset run switch,
Do not master clear. If the paper tape is a Flex tape,
set selective jump switch 2 and reset run switch., Do not
mster clear,

3h4 0321: Normml completion of processing.

3hS Any other stops: Computer error. Go to(LOAD) anmd
start processing over.

4 Use of the BS500 for statement menipulation:
4a Take write ring off tape (input tape of BSS00).

4 Put write ring on another tape (to be output tape of the
BSS00).

4c Carry both magnetic tapes to the computation center.

4d Fill out an operator card as follows:

A-54

SECTION 1V -~ OFF-LINE TEXT MANIPULATION SYSTEM
PART B4 -~ STATEMENT-STRUCTURE MODIFICATION:
OPERATOR INSTRUCTIONS

COMPUTER REQUEST CARD

::::NUM nélsnu‘cﬁons B R B
TIME ouﬁg47 ﬂ M’Z?{/ S £. ¥ /67&«(/)/,‘.) M
TIME OFF W&o Y /Z%&/A?,

REEL NO. P 5’ 1 \Ser o
READ 1&!%5 nEAD t READ =EAD nEAD READ NEAD READ
wul“’ WRITE @@ T whiTE whiTE waiTe wRITE waiTe A

DENSITY ’ Lo Lo Lo Lo Lo Lo Lo Lo Lo

Lo HI & QD . " " " " " "
a0 W 7 priolZc eutSeath
ruroe P X1 X

4e Put card deck, both tapes, and instruction card on the
table for BS500 input Jobs.

4f Pick up both tapes, output, and card deck after
processing is complete on the BS500. The processed data is
on the magnetic tape with the write ring.

5 Use of the 160a for final processing:
Sa Turn on power,
Sb Master clear,
S5¢ Turn on paper tape punch,
54 Turn on magnetic tape unit 1, load data magnetic tape in
the magnetic tape unit, anmd connect tape on buffer channel.
S5e Load MAG-TAPE ZCODE program paper tape at 0000,
Sf (NEXT) Master clear.
5¢ Put run switch in run position.
Sh Normml stop. Computer will come to a normal stop after
the entire data on magnetic tape has been processed and the
computer has punched a Flexowriter paper tape, If another
magnetic tape is to be processed, go to(NEXT),

51 If computer stops before processing is complete, reset
run switch. Do not master clear,

A=-55

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART Cl -- EDITING WITHIN STATEMENTS:
Z-CODE REFERENCE SUMMARY

1l The Z-Code editing features of the off-line system were
developed and programmed for the 160A urder the sponsorship of
the Air Force Office of Scientific Research.

2 DEFINITIONS

2a Printing Character = any symbol that prints out on the
tapewriter (alphanumeric, punctuation, mathematical symbol,
etc.)

2b Non-Printing Character = any commrd function that
records on tape but does not print out on the tapewriter
(space, carriage return, tab, backspace, etc.).

2c Word = printing character or unbroken string of printing
characters isolated by non-printing characters.

2d Gap = non-printing character or unbroken string of
non-printing characters bounded by printing characters,

2e Line = character string initiated by a carriage return.
A line may be empty (two carriage returns in sequence).

2f Statement = segment of text within reach of Z-Code
editing commands. The statement delimiter consists of two
carriage returns (or line feeds on the Teletype) and a
statement number,

3 CONVENTIONS USED IN THIS WRITEUP

3a All printing characters used in Z-Code descriptions
stand for themselves except the letter N and N followed by
an Integer,

3b The letter N will denote a general integer whose value
will specify a number of lines, words, characters, or tab
stops in a Z-Code control string.

3¢ The letter N followed by an integer, N1, N2, N3, etc.,
will denote a subscripted N, that is, a general integer.
Subscripted N will be used in expressions or discussions
involving two or more integers that can take on independent
values,

4 STRUCTURE OF A Z-CODE EDITING COMMAND

48 The computer recognizes a Z-Code editing command by the
occurrence of a letter Z followed by an integer.

A-56

SECTION 1V -- OFF-LINE TEXT MANIPULATION SYSTEM
PART C1 -- EDITING WITHIN STATEMENTS:
Z-CODE REFERENCE SUMMARY

4 Initiation and termination of specific Z-Code commands
is either explicit, involving specified symbols, or implicit
(e.g., terminated by completion of a control string).

4c¢ Point of editing within the current statement is
designated by a control string of general form N1LN2WN3C
specifying a count of N1 lines (L), N2 words (W), and N3
characters (C).

44 An editing command may contain a data string (text
and/or other characters) delimited by parentheses

(200, . .00).

EXECUTION OF Z-CODE EDITING COMMANDS

S5a The computer searches backward through a statement,
finding and executing Z-Code commands on a "last entered,
first executed" basis,

Sb Z-Code commands are treated as normal text words when
they occur at the point of editing; hence, later commands
can delete or modify earlier commands,

Sc After execution of all Z-Code commands in a statement,
text is "closed up'" by replacing line-initiation commands
with spaces or spaces with line-initistion commards as
required to justify text to left margin amd fill out
complete lines,

DELETION: ZNL, ZNW, ZNC, ZN1LN2WN3C

6a ZNL deletes N lines backward in text, counting as the
first line the one in which the Z-«Code commard occurs,

6al Line deletion is executed by deleting backward in
text until N carriege returns have been removed.

6a2 Deletion of a carriage return automtically removes
any tabs and/or spaces preceding the carriage return.

6a3 Point of reentry after line deletion is immediately
following the last printing character on the preceding
line, If that line is empty, the reentry point will
follow the carriasge return,

6b ZNW deletes N words backward in text, counting as the
first word the Z-Code command or any unbroken string of
printing characters of which it is a part,

6bl Word deletion is executed by deleting backward in

A-57

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART C1 -- EDITING WITHIN STATEMENTS:
Z-CODE REFERENCE SUMMARY

text until N gaps have been removed.

6b2 Deletion of a word thus removes the gap preceding
that word, The deleted gap may contain any nunber of
carriage returns.

b3 Point of reentry after word deletion is immediately
following the last printing character of the rreceding
word.

6c 2ZNC deletes the Z-Code commard and N characters
immediately preceding the Z-Code,

6cl Both printing and non-printing characters are
counted, including spaces and carriage returns. Each
space Introduced by a tab is counted as a separate
character,

6c2 Deletion of a carriage return automatically removes
any tabs and/or spaces preceding the carriage return;
thus after deletion of a carriage return, the next
character counted will be the last printing character on
the preceding line., If that line is empty, the next
character counted will be its carriage return.

6¢c3 Point of reentry after character deletion is
immedintely following the last surviving character, which
my be either a printing or non-printing character.

66 ZN1LNZWN3C deletes N1 lines, N2 words, and N3 characters
backward in text according to the conventions described
above for the separate commards,

6d1 Order of execution is line deletion, followed by
vord deletion, followed by character deletion, regardless
of order within the control string of the command.

6d2 Line counting begins with the line that includes the
Z-Code commard. Word counting begins with the last word
of the last surviving line, Character counting begins
with the last printing charecter of the last surviving
word.

633 Point of reentry after compourd deletion is
immediately following the last surviving character,

6e The deletion command is implicitly terminated. The next
character immediately following the control string will
appear at the point of reentry following execution of the
deletion command. This may be either a printing or

A-58

SECTION IV -~ OFF-LINE TEXT MANIPULATION SYSTEM
PART C1 -- EDITING WITHIN STATEMENTS:
Z-CODE REFERENCE SUMMARY

non-printing character. Only characters of the form NL, NW,
or NC must be excluded, since they would be interpreted as
additions or ameniments to the control string.

6f Since text is scanned backward toward the beginning
during execution of deletion commands without interpreting
deleted words, earlier editing commnds may be deleted
before execution, and thus will never be executed,

INSERTION: 2Z.IN1INZ2WN3C(xx...xxx)Z.21 gap

7a %*c The periods (.) inserted in the above example and in
similar examples to follow are to be ignored. Their sole
purpose is to "spoil" the Z-Code command so that the example
will remain in text and not be interpreted as a valid
editing commnd, since this memo is being prepared using
2-Code editing techniques,

To Insertion commnds are explicitly initiated by the
character string Z.1I followed immedistely by a control
string.

7c¢ The control string N1LNZWN3C is of the same= form as that
of a deletion command, but its interpretation is different:

7c1 Non-zero line, word, and/or character counts in the
control string key on the beginning of the statement,
line, and/or word, and counting proceeds forward in text
during execution,

7cla If none of the integers in the control string
N1LNZ2WN3C is zero, the point of insertion will be
immed iately following the N3-th character of the N2-th
word of the Nl-th line of the current statement.

7cldb A zero character count (OC) in the above control
string would place the point of insertion before the
first character of the N2-th word of the Nl-th line of
the statement, i,e,, following the gap that precedes
the NZ2-th word of that line,

7c2 Omitted line, word, and/or character counts in the
control string designate the last line of a statement,
last word of a line, and/or last character of a word.

7c2a Omitted or zero line count specifies insertion
within the line containing the Z-Code commard.

7c2db Omitted or zero word count specifies insertion

A-59

SECTION 1V
PART C1 --

-- OFF-LINE TEXT MANIPULATION SYSTEM
EDITING WITHIN STATEMENTS:
Z-CODE REFERENCE SUMMARY

74

within or adjacent to the last word of the designated
line,

7c2c¢ Omitted character count specifies insertion
immed lately following the last character of a
designated word.

7ced Note that omitted character count amd zero
character count (OC) are distinct and produce
different results.

An insertion string, enclosed in parentheses

(yoex...30x), follows the control string.

Te

7dl The insertion mey be any string of characters,
including text, punctuation, control characters, and
Z-Code deletion commanmds, but excluding Z-Code insertion
commads.,

7d2 A deletion command within an insertion string will
be inserted at the specified point in text, to be
executed later when the translator has scanned backward
to that point.

743 If spaces are required to separate an insertion from
ad Jacent text, they must be included in the parentheses.

Insertion commands are explicitly terminated by the

character string Z.2I, folloved immedlately by a gap or the
control string of an additional insertion command.

7f

7el Multiple insertion commands are formed by following
the character string Z.21 by the control string,
insertion string, and terminating string of each
successive commamd, without repeating the Z.1lI initiating

string.

7e2 A gap must follow the final Z.21 of a multiple
insertion commard.

7e3 The first non-printing character following an
insertion command will be deleted with the command
statement when it 1s executed; hence, this should be a
space or extra carriage return not required in the
ultimate formmtting during close-up of text,
Restrictions on the formation of insertion commends:

7f1 Deletion commands enbedded in the insertion command,

A-60

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART C1 -- EDITING WITHIN STATEMENTS:
Z-CODE REFERENCE SUMMARY

other than within the insertion string, will invalidate
the insertion command.

7f2 Carriage returns enbedded in the insertion command,
other than within the insertion string, will invalidate
the insertion command if thy follow non-ealphabetic
characters but will be ignored if they follow alphabetic
characters,

8 CONTROL STRING DETAILS COMMON TO DELETION AND INSERTION:

8a Any unbroken string consisting solely of integers
alternating with any of the letters L, W, and C that begins
with an integer and ends with one of the letters is a
semantically valid control string.

8b Line, word, and character counts specified by a control
string are the integers Jjust preceding the last occurrence

of the letters L, W, and C, respectively. Prior entries of
8 repeated specification are ignored.

8¢ Order of occurrence of L, W, and C in a control string
may be completely arbitrary. Execution will be the same,
regardless of the order in which the final specifications
are mde,

8 Amendment of specifications during construction of a
control string may thus be achieved by merely apperding
revised specifications to the erd of the string.

9 TABULATION

%9a Tab stops are "set" in the software package as being at
every eighth character position from the left margin.

9 Occurrence of a tab character will insert spaces as
required so that the following character will occupy the
character position designated by the next tab stop.

9c LEFT margin control: ZNT

9¢l The Z-Code command ZNT, where N 1s an integer,
establishes a "normal" left-hand margin at the N-th tab
stop. The commnd itself will be removed from text in
the editing process. The "normal" left margin
established by this command controls formatting of all
following text until this formmtting specification is
revised or removed by another ZNT command, where N is
another integer or zero,

A-61

SECTION 1V -- OFF-LINE TEXT MANIPULATION SYSTEM
PART C1 -- EDITING WITHIN STATEMENTS:
Z-CODE REFERENCE SUMMARY

9¢c2 The effect of this formatting command is to
establish a "normal" line-initiation string consisting of
a carriage return followed by N tab characters.

9¢3 Carriage returns embedded in running text must be
followed by N tab operations if ZNT has been specified
and it 1s intended that edited text be Justified to this
"normal" left margin,

9¢c4 When text is "closed up" following execution of all
Z-Code commards, ''normal" line-initiation strings may be
replaced by speces and spaces by 'normal" line-initiation
strings as required to Jjustify text to the "normal" left
margin and £ill out complete lines,

9¢5 Line-initlation strings consisting of carriage
returns alone or carriage returns followed by other than
N tab characters will not be deleted or altered in the
"eclose-up" process.

A-62

SECTION IV -- OFF-LINE TEXT MANIPULATION SYSTEM
PART C2 -- EDITING WITHIN STATEMENTS:
TELETYPE CONVENTIONS

1 The operations for specifying capitalization and
underlining, when preparing copy on the Model 33ASR
Teletypewriter, were developed and programmed for the 160A
under the sponsorship of the Air Force Office of Scientific
Research.

2 CAPITALIZATION: /,+

2a The slash (/) preceding an alphabetic character will
capitalize that character unless the slash is immediately
preceded by an alphanumeric character.

2b The PLUS sign (+) preceding an alphanumeric character
string will capitalize all the alphabetic characters in the
string unless the PLUS sign is immedistely preceded by an
alphanumeric character,

2bl String capitalization will be terminated by the
first non-printing or non-alphanumeric character
encountered following the commard,

3 UNDERLINING: <, >

3a The LESS-THAN sign (<) preceding an alphabetic string
will underline that string unless the LESS-THAN sign is
imnediately preceded by an alphabetic character.

J3al Underlining will be terminated by the first
non-alphabetic character encountered following the
commard.

3 The GREATER-THAN sign (>) preceding a non-alphabetic
string will underline that string unless the GREATER-THAN
sign is immediately preceded by a non-alphabetic printing
character.

3bl Underlining will be terminated by the first
alphabetic or non-printing character encountered
following the commard.

4 CAPITALIZATION AND UNDERLINING LIMITATIONS:

4a Arbitrary mixing of upper- and lower-case alrphabetic
characters within one word cannot be achieved,

4 Capitalization and underlining cannot be specified for
the same characters,

A-63

Security Classification

DOCUMENT CONTROL DATA - R&D

(Sscurity clessilicetion of title, body of ebstrect and indexing annotation must be enterad when the overel! report is clessilted)

1 QRIGINATIN G ACTIVITY (Corporete euthor) 2¢. REPORY SECURITY C LASSIFICATION
Stanford Research Institute, Menlo Park, California Unclassified
26 GROUP
n/a

3 REPORT TITLE

Research on Computer-Augmented Information Management

4 OESCRIPTIVE NOTES (Type of report end Inclusive dates)

Final Repor*

5. AUTHOR(S) (Las. nama. firet nama, initial)

Engelbart, D. C. and Huddart, Bonnie

3 RAE/\Z?'E D]A9Tg5 78 TOYAL Nlo‘i;r‘ PAGES 76. NO. OF REPS
8e CONTRACT OR GRANT NO. 9¢ ORIGINATOR'S REPORY NUMBER(S)
AF 19 (628)-4088
b. PROJECT NO. ESD-TDR-65-168
c [1} g“r.n'l.:o”lonf NO(S) (Any othar numbare the! may be aseigned
5 Final Report, SRI Project 4987

10. AVAILABILITY/LIMITATION NOTICES

Copies available from the Defense Documentation Center. (DDC)
DDC release to CFSTI is authorized.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Directorate of Computers, Electronic Systems Div.

Field, Bedford, Massachusetts, 01731

None Air Force Systems Command, USAF, L. G. HonscornH

13 ABSTRACT

This report presents results of a research and experimental project in computer-augmented
information management. The report is, in itself a product of the project: With the
exception of "'front matter,'' the entire report was composed, edited, and produced with
on-line and off-line computer aids. For this project, the techniques of computer aids were
applied to two areas: task monitoring and program design. The processes and techniques
developed offer a promising beginning to computer-aided programming design extending
from initial specification to final debugging in a unified design record that grows and
evolves to complete final documentation. The processes and techniques also offer promise
in increasing the productivity of individuals and groups of programmers. Future work
envisioned for information-management systems such as that used in this study include
program design records, external reference documentation, and user reference manuals.

DD 7% 1473

Security Classification

Securtty Classtfication

KEY WORDS .

LINK A LINK B8 LINK C

ROLEK wT .ROLE ROLE wT

Information Management Systems
Design

Computers

Data Storage Systems

Data Processing Systems

Data Retrieval Systems
Documentation

Programming

Computer Aids (on line-off line)
User Manual

INSTRUCTIONS

I. OR.GINATING ACTIVITY: Enter the nsme snd sddress
of the contractor, subcontractor, grantee, Department of De-
fense activity or other orgsnization (corporate suthor) issuing
the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the over-
all security classificstion of the report. Indicate whether
‘‘Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicsble, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capitsl letters. Titles in sll cases should be unclassified.
If a mesningful title csnnot be selected without clsssifice-
tion, show title classificstion in all capitals in parenthesis
immedistely following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progreas, summary, annual, or final.
Give the inclusive dates when a specific reporting period ia
covered.

5. AUTHOR(S): Enter the name(s) of author(s) ss shown on
or in the report. Enter lsst name, first name, middle initial.
If wilitary, ahow rank ond branch of service. The name of

the principal «uthor is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagiration procedures, i.e., enter the
number of pages containing information

7. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If sppropriste, enter

the applicable number of the contract or grsnt under which
the report was written.

8b, 8¢, & 8d. PROJECT NUMBER: Enter the sppropriste
militsry department identificstion, such ss project number,
subproject number, system numbers, tssk number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
snd controlled by the originsting sctivity. This number must
be uniqua to this report.

96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further disseminstion of the report, other than those

imposed by security clasaification, using standard statements
such ss:

(I) ‘'Qualified requesters may obtain copiea of this
report from DDC.*’

(2) ‘Foreign announcement and diasemination of this
report by DDC is not authorized.'’

(3) ‘'U. S. Government agencies may obtain coples of
this report directly from DDC. Other qualified DDC
users shall request through

”

(4) ‘'U. S. military agenciea may obtsin copies of this
report directly from DDC. Other qualified users
shsll request through

"

(5) ‘‘All distribution of this report is controlled Qual-

ified DDC users shall request through

If the report hss been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1l. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the resesrch and development. Include address.

13. ABSTRACT: Enter sn abstract giving a brief and factual
summary of the document indicstive of the report, even though
it msy also appesr elsewhere in the body of the technical re-
port. If sdditional spsce is required, a continuation sheet 3hsll
be attached.

It is highly desirable that the sbstract of classified reports
be unclassified. Each paragraph of the abstract shsll end with
sn indication of the militsry security clsssificstion of the in-
formation in the paragraph, represented as (TS). (§), (C), or (U).

There is no limitstion cn the length of the sbstract.
ever, the suggested length is from 150 to 225 words.

How-

14. KEY WORDS: Key words sre technically mesningful terms
or short phrases that chsrscterize a report snd msy be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such ss equipment model designstion, trade name, militsry
project code nsme, geographic locstion, msy be used as key
words but will be followed by an indicstion of te<hnical con-
text. The sssignment of links, rules, and weights is optional

- - -

Security Classification

il

o T G R o e e TR WD

PN

+— | lE \ ok €871 Copoy O FEpoe |

¥

EDITOR’S CHECKLIST FOR TECHNICAL REPORT FORMAT

BER
onftr.

e5-188"te

AF 19(628)-4088)

DATE

12 Apr 65 (Stanford Research Institut

FRONT COVER

N MARKING OMITTED

(] oaTE OMITTED

(X oTHER
(Mock=up cover attached)

£59 ENTIFIZATION CMITTED
IMPRSPER “OVER STOCK (see item 71, reverse)
MPRSEER CORYMAT 3
"
r
. SPECIAL NOTICES (Inside Front Cover)

T DS EE (] LEGAL NOTICE OMITTED
LY v AL THOES OMITTED @ OTHER
AVAIL ALY Y NOTICE OMITTED '

MISSEMINATION NOTICE OMITTED

Notices that apply to this report have been

ISPESIT I MG TICE OMITTED included on reverse of mock-up
- TITLE PAGE (First right-hand page)
NG DI R B AN e [TiTLE oMmITTED
AT AT DOWNGRADING NOTICE OMITTED m OTHER
CS5PICNALE NOTICE OMITTED

CLASSIFIZATION NOTICE OMITTED

TITLE PAGE OMITTED

.

Include a Title Page in final copy.

FOREWORD (RBHEARIX LN RItAX

NG DISCREPANCIES
€ ORENDRT PASE OMITTED

YSTEM PROJECT OR TASK NUMBER OMITTED

[T} oate omiTTED
[C] cAPTION OMITTED

[X otnHeRr

UNTRA TAOR'S HAME AND ADDRESS OMITTED
LT I LM T ATION REASON OMITTED (S.ee “,em # 2 I'eVEI’SE)
r
CINTHAC T HUMDER OMITTED .
APPROVAL STATEMENT (i %501 eKeword) -
MO TISTREPANCIES [E OTHER

APPRO /AL STATEMENT OMITTED

(See item 3, reverse)

ABSTRACT (Nexxxbtrtarkxooe)

NO DISCREPANCIES
ABSYRACT OMITTED

EXCESSIVE LENGTH

L —
B g sl

[Rt

Y oTHER -

(Continued on

reverse side)

1£

